Remember to show all necessary reasoning! Due to a desire to use less copy paper, Mr. W has probably not given you enough space for most problems, so doing this on separate paper is recommended.

1. Consider the expansion of $(x+2)^{11}$.
(a) Write down the number of terms in this expansion.
(b) Find the term containing x^{2}.
(Total 5 marks)
2. (a) Expand $(2+x)^{4}$ and simplify your result.
(b) Hence, find the term in x^{2} in $(2+x)^{4}\left(1+\frac{1}{x^{2}}\right)$.
(Total 6 marks)
3. Find the term in x^{4} in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{5}$.
(Total 6 marks)
4. The fifth term in the expansion of the binomial $(a+b)^{n}$ is given by $\binom{10}{4} p^{6}(2 q)^{4}$.
(a) Write down the value of n.
(b) Write down a and b, in terms of p and/or q.
(c) Write down an expression for the sixth term in the expansion.
5. (OPTIONAL CHALLENGE PROBLEM!!) Let $f(x)=x^{3}-4 x+1$.
(a) Expand $(x+h)^{3}$.
(b) Use the formula $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to show that the derivative of $f(x)$ is $3 x^{2}-4$.
(c) The tangent to the curve of f at the point $\mathrm{P}(1,-2)$ is parallel to the tangent at a point Q . Find the coordinates of Q.
(d) The graph of f is decreasing for $p<x<q$. Find the value of p and of q.
(e) Write down the range of values for the gradient of f.
6. Find the term in x^{3} in the expansion of $\left(\frac{2}{3} x-3\right)^{8}$.
7. (a) Expand $(x-2)^{4}$ and simplify your result.
(b) Find the term in x^{3} in $(3 x+4)(x-2)^{4}$.
(Total 6 marks)
8. Consider the expansion of the expression $\left(x^{3}-3 x\right)^{6}$.
(a) Write down the number of terms in this expansion.
(b) Find the term in x^{12}.
(Total 6 marks)
9. One of the terms of the expansion of $(x+2 y)^{10}$ is $a x^{8} y^{2}$. Find the value of a.
10. (a) Expand $\left(e+\frac{1}{e}\right)^{4}$ in terms of e.
(b) Express $\left(e+\frac{1}{\mathrm{e}}\right)^{4}+\left(\mathrm{e}-\frac{1}{\mathrm{e}}\right)^{4}$ as the sum of three terms.

WORKED OUT SOLUTIONS

1. (a) 12 terms A1 1 1
(b) evidence of binomial expansion
e.g. $\binom{n}{r} a^{n-r} b^{r}$, an attempt to expand, Pascal's triangle
evidence of choosing correct term
e.g. 10th term, $r=9,\binom{11}{9}(x)^{2}(2)^{9}$
correct working
e.g. $\binom{11}{9}(x)^{2}(2)^{9}, 55 \times 2^{9}$
$28160 x^{2}$
2. (a) evidence of expanding M1
e.g. $2^{4}+4\left(2^{3}\right) x+6\left(2^{2}\right) x^{2}+4(2) x^{3}+x^{4},\left(4+4 x+x^{2}\right)\left(4+4 x+x^{2}\right)$
$(2+x)^{4}=16+32 x+24 x^{2}+8 x^{3}+x^{4} \quad$ A2 N2
(b) finding coefficients 24 and 1
(A1)(A1)
term is $25 x^{2} \mathrm{~A} 1$
N3
3. evidence of substituting into binomial expansion
e.g. $a^{5}+\binom{5}{1} a^{4} b+\binom{5}{2} a^{3} b^{2}+\ldots$
identifying correct term for x^{4} (M1)
evidence of calculating the factors, in any order
A1A1A1
e.g. $\binom{5}{2}, 27 x^{6}, \frac{4}{x^{2}} ; 10\left(3 x^{2}\right)^{3}\left(\frac{-2}{x}\right)^{2}$

Note: Award A1 for each correct factor.
term $=1080 x^{4} \quad$ A1 2
Note: Award M1M1A1A1A1A0 for 1080 with working shown.
4. (a) $n=10 \quad$ A1 N1
(b) $a=p, b=2 q($ or $a=2 q, b=p)$

A1A1 N1N1
(c) $\binom{10}{5} p^{5}(2 q)^{5} \mathrm{~A} 1 \mathrm{~A} 1 \mathrm{~A} 1 \quad \mathrm{~N} 3$
5. (a) attempt to expand (M1)
$(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$
A1
N2
(b) evidence of substituting $\mathrm{x}+h$ (M1)
correct substitution A1
e.g. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-4(x+h)+1-\left(x^{3}-4 x+1\right)}{h}$
simplifying A1
e.g. $\frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{2}-4 x-4 h+1-x^{3}+4 x-1\right)}{h}$
factoring out $h \quad$ A1
e.g. $\frac{h\left(3 x^{2}+3 x h+h^{2}-4\right)}{h}$
$f^{\prime}(x)=3 x^{2}-4 \quad$ AG N0
(c) $f^{\prime}(1)=-1 \quad(\mathrm{~A} 1)$
setting up an appropriate equation
M1
e.g. $3 x^{2}-4=-1$
at $\mathrm{Q}, x=-1, y=4(\mathrm{Q}$ is $(-1,4)) \quad \mathrm{A} 1 \mathrm{~A} 1 \quad \mathrm{~N} 3$
(d) recognizing that f is decreasing when $f^{\prime}(x)<0 \quad$ R1
correct values for p and q (but do not accept $p=1.15, q=-1.15$)
A1A1 N1N1
e.g. $p=-1.15, q=1.15 ; \pm \frac{2}{\sqrt{3}} ;$ an interval such as $-1.15 \leq x \leq 1.15$
(e) $f^{\prime}(x) \geq-4, y \geq-4,[-4, \infty[$ A2 2
6. evidence of using binomial expansion (M1)
e.g. selecting correct term, $a^{8} b^{0}+\binom{8}{1} a^{7} b+\binom{8}{2} a^{6} b^{2}+\ldots$
evidence of calculating the factors, in any order
A1A1A1
e.g. $56, \frac{2^{3}}{3^{3}},-3^{5},\binom{8}{5}\left(\frac{2}{3} x\right)^{3}(-3)^{5}$
$-4032 x^{3}$ (accept $=-4030 x^{3}$ to 3 s.f.) A1 N2
7. (a) evidence of expanding M1
e.g. $(x-2)^{4}=x^{4}+4 x^{3}(-2)+6 x^{2}(-2)^{2}+4 x(-2)^{3}+(-2)^{4}$
$(x-2)^{4}=x^{4}-8 x^{3}+24 x^{2}-32 x+16 \quad$ A2 \quad N2
(b) finding coefficients, $3 \times 24(=72), 4 \times(-8)(=-32)(\mathrm{A} 1)(\mathrm{A} 1)$
term is $40 x^{3}$ A1 N3
8. (a) 7 terms A1 N1
(b) A valid approach (M1)

Correct term chosen $\binom{6}{3}\left(x^{3}\right)^{3}(-3 x)^{3}$
Calculating $\binom{6}{3}=20,(-3)^{3}=-27$
(A1)(A1)

Term is $-540 x^{12}$
A1 N3
9. Identifying the required term (seen anywhere)

M1
eg $\binom{10}{8} \times 2^{2}$

$$
\begin{equation*}
\binom{10}{8}=45 \tag{A1}
\end{equation*}
$$

$4 y^{2}, 2 \times 2,4$
$a=180 \quad$ A2 \quad N4
10. (a) For finding second, third and fourth terms correctly(A1)(A1)(A1)

Second term $\binom{4}{1} \mathrm{e}^{3}\left(\frac{1}{\mathrm{e}}\right)$, third term $\binom{4}{1} \mathrm{e}^{2}\left(\frac{1}{\mathrm{e}}\right)^{2}$,
fourth term $\binom{4}{1} \mathrm{e}\left(\frac{1}{\mathrm{e}}\right)^{3}$
For finding first and last terms, and adding them to their three terms (A1)

$$
\begin{align*}
& \left(e+\frac{1}{e}\right)^{4}=\binom{4}{0} e^{4}+\binom{4}{1} e^{3}\left(\frac{1}{e}\right)+\binom{4}{2} \mathrm{e}^{2}\left(\frac{1}{e}\right)^{2}+\binom{4}{3} e\left(\frac{1}{e}\right)^{3}+ \\
& \binom{4}{4}\left(\frac{1}{e}\right)^{4} \\
& \left(e+\frac{1}{e}\right)^{4}=e^{4}+4 e^{3}\left(\frac{1}{e}\right)+6 e^{2}\left(\frac{1}{e}\right)^{2}+4 e\left(\frac{1}{e}\right)^{3}+\left(\frac{1}{e}\right)^{4} \\
& \left(=e^{4}+4 e^{2}+6+\frac{4}{e^{2}}+\frac{1}{e^{4}}\right) \tag{N4}
\end{align*}
$$

(b) $\left(e-\frac{1}{e}\right)^{4}=e^{4}-4 e^{3}\left(\frac{1}{e}\right)+6 e^{2}\left(\frac{1}{e}\right)^{2}-4 e\left(\frac{1}{e}\right)^{3}+\left(\frac{1}{e}\right)^{4}$

$$
\begin{equation*}
\left(=e^{4}-4 e^{2}+6-\frac{4}{e^{2}}+\frac{1}{e^{4}}\right) \tag{A1}
\end{equation*}
$$

Adding gives $2 \mathrm{e}^{4}+12+\frac{2}{\mathrm{e}^{4}}$

$$
\left(\operatorname{accept} 2\binom{4}{0} \mathrm{e}^{4}+2\binom{4}{2} \mathrm{e}^{2}\left(\frac{1}{\mathrm{e}}\right)^{2}+2\binom{4}{4}\left(\frac{1}{\mathrm{e}}\right)^{4}\right) \quad \text { A1 } \quad \mathrm{N} 2
$$

