Glossary of command terms

Command terms with definitions

Students should be familiar with the following key terms and phrases used in examination questions, which are to be understood as described below. Although these terms will be used in examination questions, other terms may be used to direct students to present an argument in a specific way.

Calculate	Obtain a numerical answer showing the relevant stages in the working.
Comment	Give a judgment based on a given statement or result of a calculation.
Compare	Give an account of the similarities between two (or more) items or situations, referring to both (all) of them throughout.
Compare and contrast	Give an account of the similarities and differences between two (or more) items or situations, referring to both (all) of them throughout.
Construct	Display information in a diagrammatic or logical form.
Contrast	Give an account of the differences between two (or more) items or situations, referring to both (all) of them throughout.
Deduce	Reach a conclusion from the information given.
Demonstrate	Make clear by reasoning or evidence, illustrating with examples or practical application.
Describe	Give a detailed account.
Determine	Obtain the only possible answer.
Differentiate	Obtain the derivative of a function.
Distinguish	Make clear the differences between two or more concepts or items.
Draw	Represent by means of a labelled, accurate diagram or graph, using a pencil. A ruler (straight edge) should be used for straight lines. Diagrams should be drawn to scale. Graphs should have points correctly plotted (if appropriate) and joined in a straight line or smooth curve.
Estimate	Obtain an approximate value.
Explain	Give a detailed account, including reasons or causes.
Find	Obtain an answer, showing relevant stages in the working.
Hence	Use the preceding work to obtain the required result.
Hence or otherwise	It is suggested that the preceding work is used, but other methods could also receive credit.
Identify	Provide an answer from a number of possibilities.

\(\left.$$
\begin{array}{ll}\text { Integrate } & \text { Obtain the integral of a function. } \\
\text { Interpret } & \begin{array}{l}\text { Use knowledge and understanding to recognize trends and draw conclusions from } \\
\text { given information. }\end{array} \\
\text { Investigate } & \begin{array}{l}\text { Observe, study, or make a detailed and systematic examination, in order to } \\
\text { establish facts and reach new conclusions. }\end{array}
$$

Justify \& Give valid reasons or evidence to support an answer or conclusion.\end{array}\right\}\)| Add labels to a diagram. |
| :--- |

Notation list

Of the various notations in use, the IB has chosen to adopt a system of notation based on the recommendations of the International Organization for Standardization (ISO). This notation is used in the examination papers for this course without explanation. If forms of notation other than those listed in this guide are used on a particular examination paper, they are defined within the question in which they appear.

Because students are required to recognize, though not necessarily use, IB notation in examinations, it is recommended that teachers introduce students to this notation at the earliest opportunity. Students are not allowed access to information about this notation in the examinations.

Students must always use correct mathematical notation, not calculator notation.

\mathbb{N}	the set of positive integers and zero, $\{0,1,2,3, \ldots\}$
\mathbb{Z}	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
\mathbb{Z}^{+}	the set of positive integers, $\{1,2,3, \ldots\}$
\mathbb{Q}	the set of rational numbers
\mathbb{Q}^{+}	the set of positive rational numbers, $\{x \mid x \in \mathbb{Q}, x>0\}$
\mathbb{R}	the set of real numbers
\mathbb{R}^{+}	the set of positive real numbers, $\{x \mid x \in \mathbb{R}, x>0\}$
$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements x_{1}, x_{2}, \ldots
$n(A)$	the number of elements in the finite set A
$\{x \mid$ \}	the set of all x such that
ϵ	is an element of
\notin	is not an element of
\varnothing	the empty (null) set
U	the universal set
\cup	Union

\bigcirc	Intersection
\subset	is a proper subset of
\subseteq	is a subset of
A^{\prime}	the complement of the set A
$a \mid b$	a divides b
$a^{1 / n}, \sqrt[n]{a}$	a to the power of $\frac{1}{n}, n^{\text {th }}$ root of a (if $a \geq 0$ then $\sqrt[n]{a} \geq 0$)
$\|x\|$	modulus or absolute value of x, that is $\left\{\begin{aligned} x & \text { for } x \geq 0, x \in \mathbb{R} \\ -x & \text { for } x<0, x \in \mathbb{R}\end{aligned}\right.$
\approx	is approximately equal to
>	is greater than
\geq	is greater than or equal to
$<$	is less than
\leq	is less than or equal to
\ngtr	is not greater than
*	is not less than
u_{n}	the $n^{\text {th }}$ term of a sequence or series
d	the common difference of an arithmetic sequence
r	the common ratio of a geometric sequence
S_{n}	the sum of the first n terms of a sequence, $u_{1}+u_{2}+\ldots+u_{n}$
S_{∞}	the sum to infinity of a sequence, $u_{1}+u_{2}+\ldots$
$\sum_{i=1}^{n} u_{i}$	$u_{1}+u_{2}+\ldots+u_{n}$
$\binom{n}{r}$	the $r^{\text {th }}$ binomial coefficient, $r=0,1,2, \ldots$, in the expansion of $(a+b)^{n}$
$f: A \rightarrow B$	f is a function under which each element of set A has an image in set B
$f: x \mapsto y$	f is a function under which x is mapped to y

$f(x)$	the image of x under the function f
f^{-1}	the inverse function of the function f
$f \circ g$	the composite function of f and g
$\lim _{x \rightarrow a} f(x)$	the limit of $f(x)$ as x tends to a
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	the derivative of y with respect to x
$f^{\prime}(x)$	the derivative of $f(x)$ with respect to x
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	the second derivative of y with respect to x
$f^{\prime \prime}(x)$	the second derivative of $f(x)$ with respect to x
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$	the $n^{\text {th }}$ derivative of y with respect to x
$f^{(n)}(x)$	the $n^{\text {th }}$ derivative of $f(x)$ with respect to x
$\int y \mathrm{~d} x$	the indefinite integral of y with respect to x
$\int_{a}^{b} y \mathrm{~d} x$	the definite integral of y with respect to x between the limits $x=a$ and $x=b$
e^{x}	exponential function (base e) of x
$\log _{a} x$	logarithm to the base a of x
$\ln x$	the natural logarithm of $x, \log _{\mathrm{e}} x$
sin, cos, tan	the circular functions
$\mathrm{A}(x, y)$	the point A in the plane with Cartesian coordinates x and y
[AB]	the line segment with end points A and B
AB	the length of [AB]
(AB)	the line containing points A and B
\hat{A}	the angle at A
CABB	the angle between [CA] and [AB]

$\triangle \mathrm{ABC}$	the triangle whose vertices are A, B and C
v	the vector \boldsymbol{v}
$\overrightarrow{A B}$	the vector represented in magnitude and direction by the directed line segment from A to B
a	the position vector $\overrightarrow{\mathrm{OA}}$
$\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$	unit vectors in the directions of the Cartesian coordinate axes
$\|\boldsymbol{a}\|$	the magnitude of \boldsymbol{a}
$\|\overrightarrow{\mathrm{AB}}\|$	the magnitude of $\overrightarrow{A B}$
$v \cdot w$	the scalar product of \boldsymbol{v} and \boldsymbol{w}
$\mathrm{P}(A)$	probability of event A
$\mathrm{P}\left(A^{\prime}\right)$	probability of the event "not A "
$\mathrm{P}(A \mid B)$	probability of the event A given the event B
x_{1}, x_{2}, \ldots	Observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2}, \ldots occur
$\binom{n}{r}$	number of ways of selecting r items from n items
$\mathrm{B}(n, p)$	binomial distribution with parameters n and p
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
$X \sim \mathrm{~B}(n, p)$	the random variable X has a binomial distribution with parameters n and p
$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	the random variable X has a normal distribution with mean μ and variance σ^{2}
μ	population mean
σ^{2}	population variance
σ	population standard deviation
\bar{x}	mean of a set of data, $x_{1}, x_{2}, x_{3}, \ldots$

standardized normal random variable, $z=\frac{x-\mu}{\sigma}$
cumulative distribution function of the standardized normal variable with distribution $\mathrm{N}(0,1)$

Pearson's product-moment correlation coefficient

