Remember that the methods shown are not the only valid possible options! Note the command terms and the associated number of points. For example, WRITE DOWN usually only results in 1 point, whereas FIND would give more points (reasoning + answer)

1. (a) (i) $\sqrt{6}$ A1 N 1
(ii) 9

A1 N1
(iii) 0

A1 N1
(b) $x<5$

A2 N2
(c) $\quad(g \circ f)(x)=(\sqrt{x-5})^{2}$ (M1)
$=x-5$
A1 N2
2. (a) METHOD 1

$$
\begin{align*}
& f(3)=\sqrt{7} \tag{A1}\\
& (g \circ f)(3)=7
\end{align*}
$$

METHOD 2
$(g \circ f)(x)=\sqrt{x+4}^{2} \quad(=x+4)$
$(g \circ f)(3)=7$
A1 N2
(b) For interchanging x and y (seen anywhere)
Evidence of correct manipulation
(M1)
eg $x=\sqrt{y+4}, x^{2}=y+4$

$$
f^{-1}(x)=x^{2}-4
$$

A1 N2
(c) $x \geq 0$

A1 N1
[6]
3. (a) attempt to form composite
e.g. $g(7-2 x), 7-2 x+3$
$(g \circ f)(x)=10-2 x$
A1 N2
2
(b) $\quad g^{-1}(x)=x-3$

A1 $\mathrm{N} 1 \quad 1$
(c) METHOD 1
valid approach
e.g. $g^{-1}(5), 2, f(5)$
$f(2)=3$
A1 N2 2

METHOD 2

attempt to form composite of f and g^{-1}
e.g. $\left(f \circ g^{-1}\right)(x)=7-2(x-3), 13-2 x$
$\left(f \circ g^{-1}\right)(5)=3$
A1 N2 2
[5]
4. (a) attempt to form composite
e.g. $f(2 x-5)$
$h(x)=6 x-15$
A1 N2 2
(b) interchanging x and y
evidence of correct manipulation
e.g. $y+15-6 x, \frac{x}{6}=y-\frac{5}{2}$
$h^{-1}(x)=\frac{x+15}{6}$
A1 N3 3
5. (a) attempt to form composition (in any order)
$(f \circ g)(x)=(x-1)^{2}+4 \quad\left(x^{2}-2 x+5\right)$
(b) METHOD 1
vertex of $f \circ g$ at $(1,4)$
evidence of appropriate approach
e.g. adding $\binom{3}{-1}$ to the coordinates of the vertex of $f \circ g$
vertex of h at $(4,3)$
A1 N3

METHOD 2

attempt to find $h(x)$
e.g. $((x-3)-1)^{2}+4-1, h(x)=(f \circ g)(x-3)-1$
$h(x)=(x-4)^{2}+3$
vertex of h at $(4,3)$
(c) evidence of appropriate approach
e.g. $(x-4)^{2}+3,(x-3)^{2}-2(x-3)+5-1$
simplifying
e.g. $h(x)=x^{2}-8 x+16+3, x^{2}-6 x+9-2 x+6+4$
$h(x)=x^{2}-8 x+19$
AG

(d) METHOD 1

equating functions to find intersection point
e.g. $x^{2}-8 x+19=2 x-6, y=h(x)$
$x^{2}-10 x+25=0$
A1
evidence of appropriate approach to solve
e.g. factorizing, quadratic formula
appropriate working
e.g. $(x-5)^{2}=0$
$x=5(p=5)$
A1 N3

METHOD 2

attempt to find $h^{\prime}(x)$
$h^{\prime}(x)=2 x-8$
recognizing that the gradient of the tangent is the derivative
e.g. gradient at $p=2$
$2 x-8=2(2 x=10)$

$$
x=5
$$

A1 N3
6. (a) for interchanging x and y (may be done later)
e.g. $x=2 y-3$

$$
g^{-1}(x)=\frac{x+3}{2} \quad\left(\text { accept } y=\frac{x+3}{2}, \frac{x+3}{2}\right)
$$

(b) METHOD 1
$g(4)=5$
evidence of composition of functions
$f(5)=25$

METHOD 2

$$
\begin{align*}
& f \circ g(x)=(2 x-3)^{2} \tag{M1}\\
& f \circ g(4)=(2 \times 4-3)^{2} \tag{A1}\\
& =25
\end{align*}
$$

A1 N3
7. (a) $(f \circ g): x \mapsto 3(x+2) \quad(=3 x+6)$

A2 N2
(b) METHOD 1

Evidence of finding inverse functions
M1
e.g. $f^{-1}(x)=\frac{x}{3} \quad g^{-1}(x)=x-2$
$f^{-1}(18)=\frac{18}{3}(=6)$
$g^{-1}(18)=18-2(=16)$
$f^{-1}(18)+g^{-1}(18)=6+16=22$

METHOD 2

Evidence of solving equations
M1
e.g. $3 x=18, x+2=18$
$x=6, x=16$
(A1)(A1)
$f^{-1}(18)+g^{-1}(18)=6+16=22$
A1 N3
8. (a) METHOD 1

For $f(-2)=-12$
$(g \circ f)(-2)=g(-12)=-24$
A1 N2

METHOD 2

$(g \circ f)(x)=2 x^{3}-8$
$(g \circ f)(-2)=-24$
A1 N2
(b) Interchanging x and y (may be done later)
$x=y^{3}-4$
$f^{-1}(x)=\sqrt[3]{(x+4)}$
A2 N3
[6]
9. (a) Evidence of attempting to form composition

Correct substitution $(h \circ g)(x)=\frac{5(3 x-2)}{(3 x-2)-4}$
$=\frac{5(3 x-2)}{(3 x-6)} \quad\left(=\frac{15 x-10}{3 x-6}\right)\left(=\frac{5(3 x-2)}{3(x-2)}\right)$
A1 N2
(b) Evidence of using numerator $=0$
eg $15 x-10=0(3 x-2=0)$
$x=\frac{2}{3}(=0.667)$
A2 N3
[6]
10. (a) (i) $p=2$

A1 N1
(ii) $q=1$

A1 N1
(b) To solve these, set $y=0$ to find the x-intercept, then solve for x. You get two answers, but only $\mathrm{x}=2$ works with the equation. Then set $\mathrm{x}=0$ and plug it in to find the y - intercept, which conveniently comes out to be 2 (the rational part becomes zero).

We'll review this problem as a class if there are concerns.

