Functions - November 28, $2016{ }_{[41 \text { marks] }}$

1a. Let $f(x)=3 x-2$ and $g(x)=\frac{5}{3 x}$, for $x \neq 0$.

Find $f^{-1}(x)$.
\qquad

1b. Show that $\left(g \circ f^{-1}\right)(x)=\frac{5}{x+2}$.
\qquad

1c. Let $h(x)=\frac{5}{x+2}$, for $x \geqslant 0$. The graph of h has a horizontal asymptote at $y=0$.

Find the y-intercept of the graph of h.

1d. Hence, sketch the graph of h.

1e. For the graph of h^{-1}, write down the x-intercept;
\square
\qquad
\qquad
\qquad

1f. For the graph of h^{-1}, write down the equation of the vertical asymptote.
\square

1g. Given that $h^{-1}(a)=3$, find the value of a.
\square

2a. Part of the graph of a function f is shown in the diagram below.

On the same diagram sketch the graph of $y=-f(x)$.

2b. Let $g(x)=f(x+3)$.
(i) Find $g(-3)$.
(ii) Describe fully the transformation that maps the graph of f to the graph of g.

3a. Consider $f(x)=2 k x^{2}-4 k x+1$, for $k \neq 0$. The equation $f(x)=0$ has two equal roots.

Find the value of k.
\qquad

3b. The line $y=p$ intersects the graph of f. Find all possible values of p.
\qquad

4a. Let $f(x)=x^{2}$ and $g(x)=2(x-1)^{2}$

The graph of g can be obtained from the graph of f using two transformations.
Give a full geometric description of each of the two transformations.
\qquad

4b. The graph of g is translated by the vector $\binom{3}{-2}$ to give the graph of h.
The point $(-1,1)$ on the graph of f is translated to the point P on the graph of h.
Find the coordinates of P .

5a. The following diagram shows part of the graph of a quadratic function f.

The x-intercepts are at $(-4,0)$ and $(6,0)$, and the y-intercept is at $(0,240)$

Write down $f(x)$ in the form $f(x)=-10(x-p)(x-q)$.
\qquad

5b. Find another expression for $f(x)$ in the form $f(x)=-10(x-h)^{2}+k$.
\square

5c. Show that $f(x)$ can also be written in the form $f(x)=240+20 x-10 x^{2}$
\qquad

