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1 Algebra

1.1 Rules of Basic Operations

You need to be familiar with the rules of basic operations shown in Table 1.

a (b+ c) = ab+ ac a
b ·

c
d = ac

bd

a
b + c

d = a
b ·

d
d + c

d ·
b
b = ad+cb

bd − (a+ b) = −a− b

− (a− b) = b− a (a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2 (a+ b) (a− b) = a2 − b2

(a+ b) (c+ d) = ac+ ad+ bc+ bd

Table 1: Basic Operations

1.2 Rules of Roots

You need to be familiar with the rules of roots shown in Table 2.

√
ab =

√
a
√
b

√
a
b =

√
a√
b

a
1
q = q
√
a a

p
q = ( q

√
a)
p

a
− p

q = 1

( q√a)
p

p√
a
·
√
a√
a

= p
√
a

a (
√
a)

2
= a ( q

√
a)
q

= a

Table 2: Rules of Roots

1.3 Rules of Exponents

You need to be familiar with the rules of exponents shown in Table 3.

a0 = 1 a1 = a

ab · ac = ab+c
(
ab
)c

= ab·c(
a
d

)c
= ac

dc a(−c) = 1
ac

ab

ac = a(b−c) ab

de ·
dc

af
= ab

af
· dcde = ab−f · dc−e = ab−f

de−c

Table 3: Rules of Exponents

1.4 Allowed and Disallowed Calculator Functions During the Exam

The International Baccalaureate documentation for examiners dated 18/11/2015, provides the
following guidance about the functions of the TI NSpire calculator during an exam. The follow-
ing options in “Press to Test” mode must be ticked and therefore blocked: Limit geometry func-
tions; Disable function and conic grab and move; Disable vector functions including eigenvectors
and eigenvalues; Disable isPrime function; Disable differential equation graphing ; Disable 3D
graphing ; Disable implicit graphing, conic templates, conic analysis, and geometric conics. The
following options in “Press to Test” mode must be unticked and therefore allowed: Disable
inequality graphing ; Limit trigonometric functions; logb x template and summation functions;
Disable Polynomial Root Finder and Simultaneous Equation Solver.
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1.5 Sequences and Series

A sequence is an ordered list of numbers. The list can be finite or infinite. We name the se-
quence with a letter like u, and refer to an individual element (or “term”) of this ordered list
using a subscript that represents the ordinal position the particular element occupies in the list.
The first term in the sequence u is denoted by u1, the second term by u2, and so on. The nth
term in the sequence is un.

You describe a sequence by giving a formula for its nth term. This could be something simple
like the sequence each of whose terms is the number 1:

un = 1

More typically, the formula for the nth term involves the variable n in some way. It might be
involved in calculating the value of the term like:

un = n2 or un =
1

n

The n can also appear in the subscript to reference the values of previous terms. For example,
after defining the value of the first and second term, this sequence defines the nth term to be
the sum of the previous two terms:

u1 = 1

u2 = 1

un = un−1 + un−2

A series is the sum of the terms in a sequence.

1.6 Arithmetic Sequences and Series

A sequence is arithmetic if you compute its nth term by adding a constant value d to the
previous element:

un = un−1 + d

This value d is known as the common difference because if you take any term in the sequence
and subtract the value of the preceding one, the difference is d. This is a result of rearranging
the previous equation to get:

un − un−1 = d

Given the above definition for un involving d, we can also represent the nth element of an
arithmetic sequence as the first element to which the common difference d has been added n−1
times.

un = u1 + (n− 1)d

An arithmetic series is the sum of an arithmetic sequence.

1.7 Sum of Finite Arithmetic Series (u1 + · · ·+ un)

It only makes sense to talk about the sum of a finite arithmetic sequence. Since the elements
of an infinite arithmetic sequence continue growing by the common difference, we don’t try to
compute the sum of the corresponding infinite arithmetic series because its value would always
be ∞ (or −∞ if d is a negative number).
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To calculate the sum of the first n terms of a finite arithmetic sequence we use the formula:

Sn =
n

2
(u1 + un)

This formula comes from observing that the sum of the pair of u1 +un (the first and last terms)
is the same as the sum of u2 + un−1 (the second and penultimate terms), which is the same as
the sum of u3 + un−2 (the third and antepenultimate terms), etc. Since we’re pairing up the

terms, we end up with
n

2
pairs having the same sum as u1 + un. By multiplying this sum by

the number of pairs, we get the sum of all of the terms of the series up to n. Since above we
saw that un = u1 + (n− 1)d, we can also write this formula as:

Sn =
n

2
(u1 + (u1 + (n− 1)d)) =

n

2
(2u1 + (n− 1)d)

1.8 Partial Sum of Finite Arithmetic Series (uj + · · ·+ un)

Sometimes you might need to calculate the sum of a series starting at a jth term other than
the first term, that is where j > 1. These kind of problems are easy once you understand that
the sum of the first n terms equals the sum of the first j − 1 terms plus the sum of the terms
from the jth position to the nth. In other words,

Sn = (u1 + · · ·+ uj−1) + (uj + · · ·+ un)

Sn = Sj−1 + Sj...n

Rearranging the equation we have:

Sj...n = Sn − Sj−1

Therefore, to find the sum of the series from the jth term through the nth term (inclusive),
calculate Sn and subtract from it the value of Sj−1.

1.9 Geometric Sequences and Series

A sequence is geometric if you compute its nth term by multiplying the previous element by a
constant value r:

un = un−1 · r

This value r is known as the common ratio because if you take any term in the sequence and
divide by the value of the preceding one, the ratio is r. This is a result of rearranging the
previous equation to get:

un

un−1

= r

Given the above definition for un involving r, we can also represent the nth element of an
arithmetic sequence as the first element by which the common ratio r has been multiplied n−1
times.

un = u1 · rn−1

A geometric series is the sum of a geometric sequence.
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1.10 Sum of Finite Geometric Series

To calculate the sum of the first n terms of a geometric series, use the formula:

Sn =
u1 (rn − 1)

r − 1
, r 6= 1

1.11 Sum of Infinite Geometric Series

If the absolute value of the common ratio is less than one, then each time we compute the
next term of a geometric sequence it is some fraction of the previous term. In other words, the
new term is smaller in absolute value than the previous term. Another way to think of this is
that the new term is closer to zero than the previous term was. This means we can calculate
the sum of the infinite geometric series because the terms tend to zero as n gets larger and larger.

To calculate the sum of an infinite geometric series, use the formula:

S∞ =
u1

1− r
, |r| < 1

1.11.1 Example Involving Sum of Infinite Geometric Series

As shown in Figure 1, the sides of an outermost square are 16 units. To create a smaller square,
connect midpoints of the original square. Consider the sequence An of the areas of the shaded
triangles in the lower-left corner of each square, formed when the next smaller square is drawn.
Find the sum of the areas of these shaded triangles when this process continues infinitely.

Figure 1: Progressively Smaller Triangle Areas

Since the original side length is 16, the legs of the first shaded triangle are 8, and the area
A1 = 1

2 · 8 · 8 = 32. Using Pythagorean Theorem, we can see that for a square of side-length a,

its hypotenuse will always be
√
a2 + a2 = a

√
2, so the hypotenuse of the first triangle is 8

√
2.

This means that the legs of the second triangle are half of this, or 4
√

2. Therefore the area of
the second triangle is A2 = 1

2 · 4
√

2 · 4
√

2 = 16. The hypotenuse of the second shaded triangle

is 4
√

2
√

2 = 8, so the legs of the third triangle are half of this: 4. Hence, the area of the third
shaded triangle is A3 = 1

2 · 4 · 4 = 8. The hypotenuse of the third shaded triangle is 4
√

2, so

the legs of the third triangle are half of this: 2
√

2. So, the area of the fourth shaded triangle
is A4 = 1

2 ·2
√

2·2
√

2 = 4. So, the pattern that is emerging is that A =
{

32, 16, 8, 4, . . . , 26−n, . . .
}

.

Considering the sequence A of the triangle areas, we see that each subsequent term is obtained
by multiplying the previous term by 1

2 , so the sequence of the areas is a geometric sequence
with common ratio r = 1

2 . Since the common ratio is less than one in absolute value, it makes
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sense to compute the inifite sum, which is given by the formula in Section 1.11, “Sum of Infinite
Geometric Series”:

∞∑
n=1

An =
A1

1− r
=

32

1− 1
2

= 64

1.12 Sigma Notation

Sigma notation is another convenient way to represent a series. Instead of saying an English
phrase like “the sum of the first 5 terms of the sequence defined by un = 2n2 + 1”, we can write
the same expression using the much more compact formula:

5∑
n=1

2n2 + 1

The
∑

symbol is the capital Greek letter sigma, the first letter in the word “sum”. The n = 1
below the

∑
indicates the variable whose value will be changing to compute the terms in the

series, and it also indicates the starting value of this variable. The 5 above the
∑

symbol
provides the ending value of the variable n specified below the symbol. You compute each term
in the sequence by substituting the current value of the changing variable into the expression
the follows the

∑
symbol. The series is the sum of these terms.

In the example above, the variable is n and its value starts at 1 and goes to 5, increment-
ing by 1 each time. This means that we can “expand” the compact sigma notation in the
example into this expression:

5∑
n=1

2n2 + 1 =

2 (1)2 + 1︸ ︷︷ ︸
n=1

+

2 (2)2 + 1︸ ︷︷ ︸
n=2

+

2 (3)2 + 1︸ ︷︷ ︸
n=3

+

2 (4)2 + 1︸ ︷︷ ︸
n=4

+

2 (5)2 + 1︸ ︷︷ ︸
n=5


= (2 · 1 + 1) + (2 · 4 + 1) + (2 · 9 + 1) + (2 · 16 + 1) + (2 · 25 + 1)

= (3) + (9) + (19) + (33) + (51)

= 115

In the example above, by computing the difference between two pairs of consecutive terms, we
can observe that the sequence (and hence the series) is not arithmetic because the terms do not
share a common difference:

u2 − u1 = 9− 3 = 6

u3 − u2 = 19− 9 = 10 6= 6

By computing the ratio between two pairs of consecutive terms, we can also observe that the
sequence (and hence the series) is not geometric because the terms do not share a common
ratio:

u2

u1

=
9

3
= 3

u3

u2

=
19

9
6= 3

Of course there is nothing special about the letter n and the value of the variable being in-
cremented from the start index to the end index need not start with the value 1. The sigma
notation can be used with any letter for the variable and any integer values for the index start
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and end. Other common variable letters that get used are i, j, k, and m. The following series
are equivalent:

9∑
n=3

2n2 + 1 =
9∑
i=3

2i2 + 1 =
9∑
j=3

2j2 + 1 =
9∑

m=3

2m2 + 1

1.12.1 Sigma Notation for Arithmetic Series

The series that the sigma notation represents might be an arithmetic series. Consider the
example:

5∑
n=1

2n+ 1 =

2 (1) + 1︸ ︷︷ ︸
n=1

+

2 (2) + 1︸ ︷︷ ︸
n=2

+

2 (3) + 1︸ ︷︷ ︸
n=3

+

2 (4) + 1︸ ︷︷ ︸
n=4

+

2 (5) + 1︸ ︷︷ ︸
n=5


= (2 · 1 + 1) + (2 · 2 + 1) + (2 · 3 + 1) + (2 · 4 + 1) + (2 · 5 + 1)

= (3) + (5) + (7) + (9) + (11)

= 35

If we compute the difference between two pairs of consecutive terms, we see that they both have
a common difference of 2, so this series is arithmetic:

u2 − u1 = 5− 3 = 2

u3 − u2 = 7− 5 = 2

Computing the ratio between two pairs of consecutive terms, we see that there is no common
ratio, so the series is not geometric.

u2

u1

=
5

3
u3

u2

=
7

5
6= 5

3

1.12.2 Sigma Notation for Geometric Series

The series that the sigma notation represents might be a geometric series. Consider the example:

4∑
k=1

1

32k
=

 1

32·1︸︷︷︸
k=1

+

 1

32·2︸︷︷︸
k=2

+

 1

32·3︸︷︷︸
k=3

+

 1

32·4︸︷︷︸
k=4


=

1

9
+

1

81
+

1

729
+

1

6561

=
820

6561

If we compute the difference between two pairs of consecutive terms, we see that they do not
have a common difference, so this series is not arithmetic:

u2 − u1 =
1

81
− 1

9
= − 8

81

u3 − u2 =
1

729
− 1

81
= − 8

729
6= − 8

81
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Computing the ratio between two pairs of consecutive terms, we see that there is common ratio
of 1

9 , so the series is geometric.

u2

u1

=
1
81
1
9

=
1

81
· 9

1
=

1

9

u3

u2

=
1

729
1
81

=
1

729
· 81

1
=

1

9

1.12.3 Sigma Notation for Infinite Geometric Series

The sigma notation can also represent an infinite sum by having ∞ as the end value of the
variable. The infinite sum of the geometric series from the previous section would therefore be
written like:

∞∑
k=1

1

32k

Since we determined above that this series is geometric with a common ratio of r = 1
9 and since

this respects the requirement for infinite series to have |r| < 1, we can use the formula from
section 1.11 to calculate the infinite sum.

∞∑
k=1

1

32k
=

u1

1− r
=

1
32·1

1− 1
9

=
1
9
8
9

=
1

9
· 9

8
=

1

8

1.12.4 Defining Functions Using Sigma Notation

You can define a function using sigma notation by including an additional variable in the
expression other than the so-called “index variable” that is counting from the start to end
value. For example, consider the following function f(x):

f(x) = 1 + x+ x2 + x3 + x4

To write the function more compactly, you could use sigma notation like this:

f(x) =

4∑
k=0

xk

When expanding the sigma notation, each term replaces the value of the index variable with
the current integer value (from 0 to 4 in this example). Any other variables, like the x here,
remains as they are in the expression. It even makes sense to use this notation for functions
defined by infinite sums. We could write:

f(x) =
∞∑
k=0

xk

This would be the function with an infinite number of terms:

f(x) = 1 + x+ x2 + x3 + x4 + x5 + . . .
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1.13 Applications: Compound Interest

Interest is a percentage paid on an original amount of money, the principal, after a certain
interval of time. During subsequent periods, the interest earned in one period begins earning
interest (as part of the new balance) during the next period. In this way, the interest compounds
(or accumulates) period after period.

If P is the initial principal, r is the annual interest rate expressed as a decimal, and we are
compounding annually, then after one year the amount of money will be P +P · r = P · (1 + r).
That 1 inside the parenthesis ensures that the original principal amount P is included in the
new total, added to the fraction r of the principal that represents the interest. After the second
year, the amount from the end of the first year is multiplied by the same (1 + r) quantity to
produce the new balance of [P · (1 + r)] (1 + r) = P · (1 + r)2. After three years, the balance is
P · (1 + r)3. Observe that the yearly balance of the bank account is a geometric sequence with
first (zeroth) term (u0) equal to P and a common ratio of (1+r). The t-th term in the sequence
represents the balance after t years of compounding annually.

P · (1 + r)t

The period of compounding can be more frequent than once per year. It could be twelve times
a year (monthly), or fifty-two times a year (weekly), or 365 times a year (daily). In these
cases, the annual interest percentage r is divided over the number of compounding periods a
year, r

12 , r
52 , or r

365 respectively. The number of compounding periods will increase as well in
these cases. In t years, there would be 12t monthly periods, 52t weekly periods, or 365t daily
periods. In general, if there are n compounding periods per year, then the per-period fractional
amount of the annual interest rate will be r

n and the number of compounding periods will be
n · t. Therefore, the formula for calculating the balance of an initial investment P at r percent
annual interest over t years, compounding n times a year is:

P ·
(

1 +
r

n

)n·t
1.14 Applications: Population Growth

The same formula for annual compounding of interest can be used to calculate population
growth as well. If a population is initially P people, and it grows at the rate of r percent per
year (expressed as a decimal), then the total number of people after t years is:

P · (1 + r)t

1.15 Logarithms

We know intuitively when we look at an equation like 5x = 125 what the value of x has to be to
make the equality true. What is x here? It is the power to which we need to raise the base 5 to
get the result 125. In this example, it must equal 3 since 5 · 5 · 5 = 53 = 125. Similarly, if we see
the equation 5x = 25 we know x = 2. But how do we solve an equation like 5x = 100? From our
previous two observations, we understand that 52 is less than 100 and 53 is greater than 100.
In other words, we know that 52 < 5x < 53. Recall that the value of an exponent is not limited
to integer numbers like 2 or 3. Intuitively, the value of x must lie somewhere between 2 and 3.
We could start guessing at the value by picking a number like 2.5 and using our calculator to
compute 52.5 = 55.9017, which is still too small. Next we could try a value like 52.9 = 106.417,
which is too large. So, now we know that 52.5 < 5x < 52.9. Trying other values of x between
2.5 and 2.9 we could eventually converge on a value for x like 2.86135 after finding that:

52.8613︸ ︷︷ ︸
99.9915

< 5x︸︷︷︸
100

< 52.8614︸ ︷︷ ︸
100.008
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In fact, 52.86135 = 99.9995 ≈ 100. So, using this manual procedure and some intuition we’ve
calculated an approximate value for the power to which we would need to raise the base 5 to
get the value 100.

What if we were not happy with an approximation, but instead wanted the exact value of
x that solves the equation 5x = 100? This is where logarithms come into play. They provide
a mathematical notation to represent the exact value of the exponent required on a given base
like 5 to equal a desired value like 100. So rather than being contented by saying that x is
approximately equal to 2.86135, instead we can say that x equals “log base 5 of 100”, which we
write like this:

x = log5 100

The expression on the right hand side of the equals sign is an exact number (like π or
√

2) that
has a place on the number line close to, but ever so slightly to the right of 2.86135. We conclude
this because we saw that 52.86135 = 99.9995 was just a bit smaller than 100. What is the value
of this expression?

5log5 100

The number log5 100 is exactly the right number that, when used as a power on the base 5, gives
the number 100. Here we are using it as a power on the base 5, so the result of this calculation
is exactly 100.

5log5 100 = 100

So, we see that the action of “raising base 5 to a power” and “taking the log base 5” are inverse
operations. One operation “undoes” the other. Consider the following expression. What does
it equal?

log5
(
53
)

We know from above that log5
(
53
)

is a number that is exactly the right exponent to use on the
base 5 to get the value 53. So what is that exponent?

log5
(
53
)

= 3

The exponent we need to use on the base 5 to get the result of 53 is just the number 3. So
again, we see that the actions of “raising base 5 to a power” and “taking the log base 5” are
inverse operations. One operation “undoes” the other.

1.16 Using Logarithms to Solve Equations

Given that the actions of “raising base b to a power” and “taking the log base b” are inverse
operations, we can use these actions as tools when solving equations. If the unknown variable
x is “trapped” in the position of the exponent like this:

92x = 6561

We can “take the log of both sides” to free the expression involving x from its trapped position
up in the exponent. In order to have the inverse effect, we need to pick the correct base of the
logarithm to match the base that is trapping our expression. In this case, the base is 9, so we’ll
take the log9 of both sides to keep the equation equal:

92x = 6561

log9
(
92x
)

= log9 6561
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The expression log9
(
92x
)

represents the power we need to put on the base 9 to get 92x, so that
is just 2x. As before the operations of “taking the log base 9” and “raising the base 9 to a
power” are inverses, so they cancel or neutralize each other:

log9
(
92x
)

= log9 6561

2x = log9 6561

x =
log9 6561

2
=

4

2
= 2

1.17 Using Exponentiation to Solve Equations

Given that the actions of “taking the log base b” and “raising base b to a power” are inverse
operations, we can use these actions as tools when solving equations. If the unknown variable
x is “trapped” in the expression of a logarithm like this:

log9 (3x) = 4

We can “raise a base to a power” on both sides to free the expression involving x from its
trapped position inside the logarithm. In order to have the inverse effect, we need to pick the
correct base of the logarithm to match the base that is trapping our expression. In this case,
the base is 9, so we’ll use 9 as the base on both sides of the equals sign, and use the expression
on both sides as the exponent on this base. Since those expressions were equal before, putting
equal exponents on the same base 9 will produce results that are also equal:

log9 (3x) = 4

9log9 (3x) = 94

The expression log9 (3x) represents the power we need to put on the base 9 to get 3x, and
we have used it as power on exactly that base 9 here, so it must produce 3x. As before the
operations of “raising the base 9 to a power” and “taking the log base 9” are inverses, so they
cancel or neutralize each other:

9log9 (3x) = 94

3x = 6561

x =
6561

3
= 2187

1.18 Logarithm Facts Involving 0 and 1

Two facts that stem from the definition of logarithm are the following (for any value of b > 0):

logb 1 = 0 (since b0 = 1)

logb b = 1 (since b1 = b)

logb 0 = undefined (since no value x makes bx = 0)

1.19 Laws of Exponents and Logarithms

There are three laws to remember to help simplify expressions involving logarithms:

logb a+ logb c = logb (a · c)

logb a− logb c = logb

(a
c

)
logb (ac) = c · logb (a)
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1.20 Change of Base

A fourth law related to logarithms is the “Change of Base” law. This allows you to change a
logarithm in one base p to a new base q.

logp a =
logq a

logq p

Consider the expression log12100. To compute a decimal value for this using the change of base
rule, you can re-express it in terms of base 10 as follows:

log12100 =
log10100

log1012
=

2

1.07918
= 1.85326

1.21 Powers of Binomials and Pascal’s Triangle

A polynomial is a mathematical expression involving a sum of powers of one or more variables
multiplied by coefficients. For example, the following is a polynomial in variables x and y with
integer coefficients:

15x2y3 + 7xy2 − 6xy

The individual terms in the sum are called monomials. A polynomial that is the sum of two
monomials is known as a binomial. For example, all of the following are examples of binomials:

15x2y3 + 7xy2

15x2 − 7x

15x+ 7y

x+ 1

When you multiply one binomial by another you expand the product one step at a time using
the distributive property of multiplication. For example, consider:

(15x+ 7y)(x+ 2) = (15x+ 7y) · x+ (15x+ 7y) · 2
= 15x · x+ 7y · x+ 15x · 2 + 7y · 2
= 15x2 + 7xy + 30x+ 14y

The same approach works, of course, when you multiply a binomial by itself:

(x+ 1)(x+ 1) = (x+ 1) · x+ (x+ 1) · 1
= x · x+ 1 · x+ x · 1 + 1 · 1
= x2 + x+ x+ 1

= x2 + 2x+ 1

Using shorthand notation, we see then that:

(x+ 1)2 = (x+ 1)(x+ 1) = x2 + 2x+ 1

We can use the same approach to multiply a binomial by itself to higher powers. For example,
consider:

(x+ 1)3 = (x+ 1)2(x+ 1) = (x+ 1)2 · x+ (x+ 1)2 · 1
= (x2 + 2x+ 1) · x+ (x2 + 2x+ 1) · 1
= x2 · x+ 2x · x+ 1 · x+ x2 · 1 + 2x · 1 + 1 · 1
= x3 + 2x2 + x+ x2 + 2x+ 1

= x3 + 3x2 + 3x+ 1
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Continuing the pattern, we can calculate:

(x+ 1)4 = (x+ 1)3(x+ 1) = (x+ 1)3 · x+ (x+ 1)3 · 1
= (x3 + 3x2 + 3x+ 1) · x+ (x3 + 3x2 + 3x+ 1) · 1
= x3 · x+ 3x2 · x+ 3x · x+ 1 · x+ x3 · 1 + 3x2 · 1 + 3x · 1 + 1 · 1
= x4 + 4x3 + 6x2 + 4x+ 1

If you adopt the convention of always ordering the powers of x from highest to lowest going
left to right, then as you continue expanding the binomial (x+ 1) to higher and higher powers,
you would notice that the coefficients of the terms follow the pattern in Pascal’s Triangle shown
in Figure 2. If you study a row in the triangle like Row 6, you can see that each row begins
and ends with 1 and that the coefficients in the inside positions are symmetric. Each of these
“middle coefficients” in Row 6 is obtained by adding the coefficient above and to its left with the
one above and to its right from the previous row. So 6 = 1 + 5, 15 = 5 + 10, and 20 = 10 + 10.
Knowing this pattern, it would be easy to extend the triangle to any number of rows.

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Row 5: 1 5 10 10 5 1

Row 6: 1 6 15 20 15 6 1

Row 7: 1 7 21 35 35 21 7 1

Figure 2: Row n in Pascal’s Triangle are coefficients of binomial expansion of (x+ 1)n

1.22 Expansion of (a+ b)n

In practice, the binomial raised to a power that you will need to expand will be more complex
than the simple (x+ 1)n we studied in the previous section. So it won’t be possible, in general,
to just read the numbers off of Pascal’s Triangle and be done with it. For example, consider a
slightly more complicated binomial expansion like this:

(3x+ 2y)6

We can still use Pascal’s Triangle to find the coefficients, but we need to be more careful
about following the pattern. Since we’re raising the binomial to the sixth power, we’ll use the
coefficients from Row 6 in the triangle:

(3x+ 2y)6 = 1 · (. . . ) + 6 · (. . . ) + 15 · (. . . ) + 20 · (. . . ) + 15 · (. . . ) + 6 · (. . . ) + 1 · (. . . )

From the simpler (x + 1)n examples in the previous section, we saw that the highest power of
x started with the same power to which the binomial was being raised and then proceeded to
get smaller by one in each successive term. The same pattern works when the first term in the
binomial is 3x...

(3x+ 2y)6 = 1 · (3x)6(. . . ) + 6 · (3x)5(. . . ) + 15 · (3x)4(. . . )

+ 20 · (3x)3(. . . ) + 15 · (3x)2(. . . ) + 6 · (3x)1(. . . ) + 1 · (3x)0(. . . )

While it was hard to observe when the second term in the binomial was 1, there was a similar
pattern occurring for the powers of the second term. However, the powers of the second term
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start at 6 in the final term and count down to 0 in each preceding term (going right to left).
Alternatively, you can think of them starting with 0 and counting up to 6 going left to right,
like this...

(3x+ 2y)6 = 1 · (3x)6(2y)0 + 6 · (3x)5(2y)1 + 15 · (3x)4(2y)2

+ 20 · (3x)3(2y)3 + 15 · (3x)2(2y)4 + 6 · (3x)1(2y)5 + 1 · (3x)0(2y)6

Notice in each term of the expansion, the powers of the two monomials add up to 6, which is
the power to which the original binomial is being raised. If we simplify the expression by raising
each monomial to the indicated power, we get:

(3x+ 2y)6 = 1 · 36 · x6 · 20 · y0 + 6 · 35 · x5 · 21 · y1 + 15 · 34 · x4 · 22 · y2

+ 20 · 33 · x3 · 23 · y3 + 15 · 32 · x2 · 24 · y4 + 6 · 31 · x1 · 25 · y5

+ 1 · 30 · x0 · 26 · y6

= 729x6 + 6 · 243x5 · 2y + 15 · 81x4 · 4y2 + 20 · 27x3 · 8y3

+ 15 · 9x2 · 16y4 + 6 · 3x · 32y5 + 64y6

= 729x6 + 2916x5y + 4860x4y2 + 4320x3y3 + 2160x2y4 + 576xy5 + 64y6

1.23 The Binomial Theorem

We have seen how to compute (a + b)n using the ”brute force” procedure in the previous sec-
tion, using the n-th row from Pascal’s Triangle for the coefficients. However, this process would
quickly become tedious if n were a larger number like 17 or 37, especially if you only need to
calculate one term in the expansion.

The Binomial Theorem gives a more concise formula to calculate any particular term in the
expansion of (a + b)n for any value of n. It relies on the observation that the r-th entry in
n-th row of Pascal’s Triangle is precisely the number of ways there are to choose r items out
of a set of n items (where the order of the items does not matter). This is a calculation from
combinatorics that has a special notation named “n choose r” that looks like this:(

n

r

)
=

Permutations of r elements without repetition from set of n elements

Permutations of r elements

=
n · (n− 1) · · · (n− r + 1)

r!

=
1

r!
· (n · (n− 1) · · · (n− r + 1))

=
1

r!
· n · (n− 1) · · · (n− r + 1) ·����(n− r) ·������

(n− r − 1) ·������
(n− r − 2) · · · �2 · �1

����(n− r) ·������
(n− r − 1) ·������

(n− r − 2) · · · �2 · �1

=
1

r!
· n!

(n− r)!

=
n!

(r!)(n− r)!

Here the exclamation point stands for the “factorial” of a number, which is the product of all
natural numbers from n down to 1. For example, 6! = 6 ·5 ·4 ·3 ·2 ·1 = 720. If you have 6 items
and you want to know how many different ways there are to pick 4 items out of that set (where
order does not matter), then you can use this “6 choose 4” formula to calculate it like this:(

6

4

)
=

6!

(4!)(6− 4)!
=

6!

(4!)(2)!
=

6 · 5 · 4 · 3 · 2 · 1
(4 · 3 · 2 · 1)(2 · 1)

=
6 · 5

2
= 15
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The binomial theorem uses this “n choose r” notation and the sigma notation to write the
expansion of the binomial (a+ b) to the n-th power:

(a+ b)n =
n∑
r=0

(
n

r

)
(a)n−r(b)r

Using this notation we can recompute the example of (3x+ 2y)6 from the previous section:

(3x+ 2y)6 =

6∑
r=0

(
6

r

)
(3x)6−r(2y)r

=

(
6

0

)
(3x)6−0(2y)0 +

(
6

1

)
(3x)6−1(2y)1 +

(
6

2

)
(3x)6−2(2y)2+(

6

3

)
(3x)6−3(2y)3 +

(
6

4

)
(3x)6−4(2y)4 +

(
6

5

)
(3x)6−5(2y)5+(

6

6

)
(3x)6−6(2y)6

Using your calculator’s nCr(n,r) function (in the Probability category under Combinations)

to calculate the value of each

(
6

k

)
expression, expanding the power of each term, and simplifying

you’ll end up with the same answer we calculated above.

(3x+ 2y)6 = 1 · (3x)6 + 6 · (3x)5(2y)1 + 15 · (3x)4(2y)2

20(3x)3(2y)3 + 15(3x)2(2y)4 + 6(3x)6−5(2y)5

1 · (2y)6

= 729x6 + 2916x5y + 4860x4y2 + 4320x3y3 + 2160x2y4 + 576xy5 + 64y6

1.23.1 Using The Binomial Theorem for a Single Term

A question like, “What is the coefficient of the x2 term in (3x2 +
1

x
)7?” is easy to answer using

the Binomial Theorem, without having to do all the work to expand every term.

It tells us that for any r between 0 and 7, the r-th term will be:(
7

r

)
(3x2)7−r(

1

x
)r

We can rewrite this r-th term by simplifying the exponents and writing 1
x as x−1 like this:(

7

r

)
(3x2)7−r(

1

x
)r =

(
7

r

)
37−rx2(7−r)(x−1)r

=

(
7

r

)
37−rx14−2r(x)−r

=

(
7

r

)
(3)7−r(x)14−3r

So, we can find which value of r will produce the term with x2 in the expansion by solving the
simple equation based on the exponent 14− 3r in the r-th term:

14− 3r = 2

12 = 3r

r =
12

3
= 4
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Therefore, the r = 4 term will be the one that has x2. Substituting r = 4 into the Binomial
Theorem, we can compute the desired term of the expansion. N.B. Since the first term has
r = 0, the r = 4 term is the fifth monomial in the expansion:(

7

4

)
(3x2)7−4

(
1

x

)4

= 35 · (3x2)3
(

1

x

)4

= 35 · 33 · x6 1

x4

= 35 · 27 · x2

= 945x2

Therefore, without expanding all of the terms, we have determined that 945 is the answer to

the question “What is the coefficient of the x2 term in (3x2 +
1

x
)7?”

1.23.2 Example of Using Binomial Theorem

Consider the following problem:

Given that

(
1 +

2

3
x

)n
(3 + nx)2 = 9 + 84x+ · · · , find the value of n

Since the right side of the equation only provides us information about the units (9) and the x
term (84x), we will focus our attention only on the terms with no x and x to the first power.
We can ignore terms with x2 or higher powers of x.

Using the Binomial Theorem, the first (r = 0) term and second (r = 1) term of the expansion
is: (

1 +
2

3
x

)n
=

(
n

0

)
(1)n−0

(
2

3
x

)0

+

(
n

1

)
(1)n−1

(
2

3
x

)1

+ · · ·

= 1 · 1 · 1 +

(
n

1

)
· 1 · 2

3
x+ · · · = 1 +

(
n

1

)
· 2

3
x+ · · ·

So, we can substitute this expansion into the left-hand side of the equation in the problem, and
simplify. Any time we get a power of x2 while multiplying we can ignore that term since we
only care about the units and the x term:(

1 +
2

3
x

)n
(3 + nx)2 =

(
1 +

(
n

1

)
2

3
x+ · · ·

)
(3 + nx)2

= 1 · (3 + nx)2 +

(
n

1

)
2

3
x(3 + nx)2 + · · ·

=
(
9 + 6nx+ n2x2

)
+

(
n

1

)
2

3
x
(
9 + 6nx+ n2x2

)
+ · · ·

= (9 + 6nx+ · · · ) +

(
n

1

)
2

3
x (9 + 6nx+ · · · ) + · · ·

= 9 + 6nx+

(
n

1

)
2

3
x · 9 +

(
n

1

)
2

3
x · 6nx+ · · ·

= 9 + 6nx+ 6

(
n

1

)
x+ 4

(
n

1

)
nx2 + · · ·

= 9 +

(
6n+ 6

(
n

1

))
x+ · · ·
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At this point, we can set the coefficient on x equal to 84 and solve the problem:

6n+ 6

(
n

1

)
= 84

6

(
n+

(
n

1

))
= 84(

n+

(
n

1

))
=

84

6
= 14

Since

(
n

1

)
=

n!

(1!)(n− 1)!
=

n����(n− 1)!

(1)����(n− 1)!
= n, we have:

(
n+

(
n

1

))
=

84

6
= 14

(n+ n) =
84

6
= 14

2n = 14

n = 7

Out of curiosity, Mathematica tells me that the complete expansion works out to:

6272x9

2187
+

23744x8

729
+

39328x7

243
+

4144x6

9
+

22232x5

27
+

8596x4

9
+ 714x3 + 329x2 + 84x+ 9

1.24 Solving Systems of Three Linear Equations Using Substitution

Consider the function f(x) = px3 + qx2 + rx. The graph passes through the origin and the
points A(−2,−8), B(1,−2), and C(2, 0). Find three linear equations in p, q, and r, then solve
the system of linear equations to find the values of p, q, and r.

By substituting in the x and y values of the three points into f(x), we produce the follow-
ing system of three linear equations in three variables:

−8p+ 4q − 2r = −8 Equation using A(−2,−8)

p+ q + r = −2 Equation using B(1,−2)

8p+ 4q + 2r = 0 Equation using C(2, 0)

One way to solve this problem is to use the substitution method. Adding the first and third
equations together gives:

−8p+ 4q − 2r = −8

+
(
8p+ 4q + 2r

)
= 0

8q = −8

q = −1

Then, once finding the value of q, you can substitute it into any two of the three equations to
end up with two equations in two variables p and r. Picking the first and second equations and
substituting in our value of q we get:
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−8p− 2r = −4

p+ r = −1

We can solve for p using the second equation to get p = −1 − r and then substitute that into
the other equation to solve for r:

−8 (−1− r)− 2r = −4

8 + 8r − 2r = −4

6r = −12

r = −2

So, now we know that q = −1 and r = −2, we substitute those into any of the three equations
to find the remaining value p. Using the second equation of the original three, and substituting
in the values of q and r that we know, we have:

p− 1− 2 = −2

p = 1

So the answer is p = 1, q = −1, and r = −2.

1.25 Solving Systems of Three Linear Equations Using Technology

You can use the TI Nspire CX calculator to easily solve a system of three linear equations like
the one in the previous section. To access this functionality, use the “Menu” button while in a
calculator document to pick the “Algebra →Solve Systems of Linear Equations...” option. As
shown in Figure 3, enter the number of equations and a comma-separated list of the variables
involved, then press the “OK” button to continue.

Figure 3: Entering Number of Equations and Variables Involved

Enter the three equations as shown in Figure 3, and press “Enter” to compute the solution.

Figure 4: Entering System of Three Linear Equations in p, q, and r variables

In the time it takes to type in the equations, your calculator produces the answer {1,−1,−2}.
The order of the solutions matches the order of the variables you entered into the “Variables”
field of the dialog box in the first step. Therefore, since you typed in p, q, r into that box earlier,
the solution is p = 1, q = −1, and r = −2.
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2 Functions and Equations

2.1 Sets

A set is a collection of elements. The set can contain no elements, a finite (i.e. countable)
number of elements, or an infinite number of elements. If the set is empty, then we write:

S = ∅

If the set is finite, then its elements can be listed explicitly:

S = {2, 3, 5, 7, 11}

If there is an obvious pattern to the elements in the set, then rather than listing every one,
you can provide an example of the list and use dots to show where the pattern continues. For
example, the set T below contains all odd numbers between 1 and 101:

T = {1, 3, 5, 7, 9, . . . , 101}

If the set contains an infinite number of elements, the dots can indicate that the pattern goes
on forever. For example, the set D below are all even numbers greater than or equal to 2:

D = {2, 4, 6, 8, 10, . . . }

A set can be described in words like the example below that defines the set P to be the set of
all prime numbers:

P = {n ∈ N |n is prime}

We read this definition, “P is the set of all natural numbers n such that n is prime.” To the left
of the vertical “such that” bar, we provide a variable and indicate the set of numbers to which
it belongs. On the right of the vertical bar, we provide a condition that indicates the “rule”
that defines which elements of that set belong to the current set we are defining.

The vertical “such that” bar can be used with other kind of conditions to help define the
elements of a set. For example, the set W below is defined to be the set of all real numbers
between −2π and 2π (inclusive).

W = {x ∈ R | −2π ≤ x ≤ 2π}

2.2 Union and Intersection of Sets

Addition and multiplication define two operations on numbers that we use to produce new
numbers as a result. Analogously, we frequently use two operations on sets called union and
intersection to produce new sets from existing ones. The union of two sets A and B is defined
as the set that contains the elements that are either in A or in B (or in both). It is written
using the “cup” symbol that looks like the letter u in the word union. For example:

{1, 3, 5, 7} ∪ {2, 3, 6} = {1, 2, 3, 5, 6, 7}

Notice that even though the number 3 appears in both sets, it only occurs once in the set that
is their union. Sets never contain repeated occurrences of the same element.

The intersection of two sets A and B is defined as the set that contains the elements that
are in both A and B. It is written using the “cap” symbol that looks like an upside-down letter
u. For example:

{1, 3, 5, 7} ∩ {2, 3, 6} = {3}

If the sets contain no common elements, then their intersection is the empty set:

{1, 3, 5, 7} ∩ {2, 6} = ∅
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2.3 Common Sets of Numbers

In IB Maths Standard we work with four important sets of numbers. The set of natural num-
bers N includes zero as well as the “counting numbers”, the positive whole numbers 1, 2, 3,
etc. The set of integers Z includes all of the natural numbers along with their negatives. The
blackboard letter Z used to denote this set comes from the German word for numbers zahlen.
The set of rational numbers Q contains elements formed by a ratio of two integers, that is,
one number divided by another: in short, all fractions. By thinking of the fractions formed by
an integer in the numerator and the number one (1) in the denominator, it’s easy to see that
rationals also include all integers. The blackboard letter Q naming this set comes from the word
“quotient”, another word for one number divided by another. Finally, the set of real numbers R
includes all of the rational numbers, along with irrational numbers like π and

√
2 which cannot

be represented exactly as a fraction.

When all the elements of one set A are contained in another set B, we say that A is a subset
of B and write A ⊂ B. Given the definitions above, we have the following subset relationships
between the common sets of numbers we will work with:

N ⊂ Z ⊂ Q ⊂ R

2.4 Intervals of Real Numbers

When working with the real numbers R we often will work with subsets defined by the set of
reals contained between a lower bound and an upper bound. For example, the set W of all real
numbers between 0 and π

4 , which above we learned could be written as:

W =
{
x ∈ R

∣∣∣ 0 ≤ x ≤ π

4

}
If we change the ≤ symbol in the set’s definition to use < instead, then we can define a subset
J of W that does not include the lower bound 0 and does not include the upper bound π

4 :{
x ∈ R

∣∣∣ 0 < x <
π

4

}
= J ⊂W

A set defined by all real numbers between an upper bound and a lower bound is called an
interval. The set W defined above is known as a closed interval because it contains its upper
and lower bounds, while the set J is known as an open interval because it omits (excludes) its
bounds. This idea of interval of real numbers is used so frequently that we have a more compact
notation for it. We can rewrite the sets W and J using this interval notation like this:

W =
[
0,
π

4

]
J =

(
0,
π

4

)
The square brackets indicate a closed interval that includes its bounds, while the round brackets
(parentheses) denote an open interval that excludes its bounds. Since the set of real numbers is
often represented as a number line, the upper and lower bounds of an interval are usually called
endpoints of the interval because they define the endpoints of a segment of the real number line.
Using this terminology, a closed interval includes its endpoints while an open interval excludes
them.

Of course, an interval can independently include or exclude its upper and lower endpoint,
so we can write intervals using a mixture of the square brackets and round brackets like the
example below. The interval C include its lower endpoint 0 but excludes its upper endpoint
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π
4 . Conversely, the interval D excludes its lower endpoint 0 but includes its upper endpoint π

4 .
These intervals are known as semi-open:

C =
[
0,
π

4

)
D =

(
0,
π

4

]
If an interval continues forever in the direction toward positive infinity or toward negative
infinity, then we always write the side of the interval containing an infinity as an open interval
end like this:

[−5,∞) = {x ∈ R |x ≥ −5}
(7,∞) = {x ∈ R |x > 7}

(−∞,
√

2] =
{
x ∈ R

∣∣∣x ≤ √2
}

(−∞, π) = {x ∈ R |x < π}
(−∞,∞) = {x ∈ R}

2.5 Concept of Function

A function is an operation that uniquely associates each element of an “input” set with a mem-
ber of another “output” set. In IB Standard Level Maths, both the input and output sets are
typically the set of all real numbers R, or some subset of it like the positive real numbers or the
interval [0, 2π], for example.

We give each function a name like f or g and say that the function “maps” a value in the
input set to a value in the output set. Using a variable like x to represent an arbitrary element
of the input set, we can describe a function by the operation it performs on this arbitrary ele-
ment. For example, a function named f that takes an arbitrary value x from its input set and
raises the base 2 to the power x would be written:

f(x) = 2x

We read the expression f(x) as “f of x”. Figure 5 shows the function, its input set, and its
output set in a pictorial form.

Figure 5: Function f associates elements of input set with output set

2.6 Graph of a Function

For functions that map elements of the real numbers to other real numbers (R→ R) , we can
visualize the operation the function performs by considering the set of all points (x, y) in the
Cartesian plane (written in shorthand as R×R or R2) where the x-coordinate is in the input set
of the function and the y-coordinate is the value f(x) to which the function maps x. Consider

the function f(x) =

√
x+ 4

x− 4
+ 1. Figure 6 shows the visualization the Texas Instruments

Nspire-CX calculator produces for the set of points defined by:{
(x, y) ∈ R2

∣∣∣∣ y =

√
x+ 4

x− 4
+ 1

}
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This visualization is known as the graph of the function f(x). Since the calculator supports
graphing multiple functions on the same graph, it names the first function f1(x), the second
function f2(x), and so on.

Figure 6: Graph of f(x) =
√
x+4
x−4 + 1

2.7 Domain of a Function

A function f ’s input set is called its domain. On some occasions, a function’s domain may be
limited on purpose by the problem statement to focus your attention on a particular interval
such as {x ∈ R | −2π ≤ x ≤ 2π}. However, more typically a function’s domain will consist of
the set of all real numbers R, except where the function is not defined. Consider again the

function in Figure 6 f(x) =

√
x+ 4

x− 4
+ 1. The value 4 would cause the x− 4 in the denominator

to be zero, which would cause trouble for the function f because we cannot divide by zero.
Furthermore, the numerator is only well-defined if the value under the square root is non-
negative. In other words, it must be the case that x+ 4 ≥ 0, so x ≥ −4. So the domain of f(x)
is the set {x ∈ R |x ≥ −4 and x 6= 4}. Another way of writing this using interval notation is
[−4, 4) ∪ (4,∞). Notice in Figure 6 that the graph of this function does not exist to the left of
x = −4 and that it is undefined at x = 4 where there is a vertical asymptote. We can see the
domain of the function f in its graph by scanning across the x-axis and noticing which values
of x the function takes on along its graph.

2.8 Range of a Function

A function f ’s output set is called its range. It consists of all elements that result by applying
the function f(x) to all elements x in the domain. We can see the range of the function f in
its graph by scanning up and down the y-axis and noticing which values of y the function takes
on along its graph. Looking again at Figure 6, we see that around the vertical asymptote at
x = 4, the function’s value goes down to negative infinity (−∞) on the left of the asymptote
and up to positive infinity (∞) on the right of the asymptote. So, by choosing a value for x that
is appropriately close (but not equal to) 4, we can produce function values that are as large as
we want in either positive or negative direction. So, it would appear that the range is all of the
real numbers (R). However, the function has a horizontal asymptote at y = 1. As the value
of x gets larger and larger in the positive direction, the value of the function gets closer and
closer to 1 from above, but never actually reaches the value 1. So, on second thought it would
appear that the range of the function f from Figure 6 is all real numbers except 1, or written
in set notation {y ∈ R | y 6= 1}. However, notice that the function is defined at x = −4 and that

f(−4) =

√
−4 + 4

−4− 4
+ 1 =

0

−8
+ 1 = 1. Therefore, even though the function never takes on the

value 1 as the value of x gets larger and larger, it does equal 1 right at x = −4 which is part of
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the domain. Therefore, the range is all real numbers (R).

Consider another example of the function f(x) = x2 shown in Figure 7.

Figure 7: Graph of f(x) = x2

Here there are no values in R where the function is undefined, so the domain is all real numbers
(R). Scanning up and down along the y-axis, we see that the function’s y values never go
below zero. When the function is applied to any negative numbers in the domain, the result
is a positive number. So, the range of this function is the set of all non-negative real numbers
{y ∈ R | y ≥ 0}.

2.9 Composing One Function with Another

Given a value x in the domain of a function f , if you take the result of applying f to x and
then apply another function g to that result, you end up with g(f(x)), which we read “g of f of
x”. We call this “chaining” of functions composition. Consider two functions f and g defined
as follows:

f(x) = 2x g(x) = x2 + 1

Figure 8 shows what happens if we compose function g with function f , which means first
applying f(x) and then “chaining” that output into the input of g(x) to produce g(f(x)). We
write the function “g composed with f” using a circle symbol between them: g ◦f . We see that
the result of composing g with f is the function:

g ◦ f(x) = (2x)2 + 1

Figure 8: Composite function g ◦ f(x)

On the other hand, as shown in Figure 9 if we first apply g to x and then “chain” that output
g(x) into the input of the function f , we produce a different resulting composed function f ◦g(x):

f ◦ g(x) = 2x
2+1
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Figure 9: Composite function f ◦ g(x)

So we see from this simple example that by changing the order of function composition, we pro-
duce different resulting functions. This tells us that the order of composition is not commutative
like addition or multiplication is. In other words, in most cases:

f ◦ g(x) 6= g ◦ f(x)

2.10 Identity Function

The identity function maps a value in the domain to itself and is represented by the function
f(x) = x.

2.11 Inverse Function

Given a function f , its inverse function f−1 “reverses” or “inverts” the mapping that f performs
on its input x. If you first put a value x into the function f and then put that result into the
function f−1, then you get back the original value x. In other words, f composed with f−1 is
the identity function.

f ◦ f−1(x) = f−1 ◦ f(x) = x

2.12 Determining the Inverse Function as Reflection in Line y = x

Figure 10 shows how the ex and lnx functions, which are inverses of each other, are a reflection
in the line y = x. If you only need to graph the inverse, simply draw its reflection in the line
y = x.

Figure 10: Inverse Functions ex and lnx are Reflections in y = x

Another important fact to remember about inverse functions is that if the point (p, q) lies on
the curve of function f(x), then the point (q, p) lies on the curve of the inverse f−1(x). This is
a direct corollary of the fact that any inverses are reflections in the line y = x.
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Figure 11: If (p, q) Lies on Graph of f(x), then (q, p) Lies on Graph of Inverse f−1(x)

Figure 11 shows the graphs of two functions which are inverses f1(x) = e0.25x and f2(x) = lnx
0.25 .

Notice how, as expected, they are each others reflection in the line y = x. But also notice
how the points (4, 2.72) and (6, 4.48) lie on the curve f1(x) and the points with inverted x-and
y-coordinates (2.72, 4) and (4.48, 6) lie on the inverse curve f2(x). This makes sense because
the definition of an inverse function is that it “undoes” the mapping that the other function did.
If f1(x) maps the number 4 in the domain (x-axis) to the number 2.72 in the range (y-axis)
– which is what saying “the point (4, 2.72) is on curve f1” means – then the inverse function
must map 2.72 back to 6 in order that the original operation be “undone” to get back to the
point you started with.

2.13 Determining the Inverse Function Analytically

Given a function f(x) to determine its inverse function f−1(x) analytically, follow these steps:

1. Write the function using y = · · · instead of f(x) = · · ·
2. Switch all occurrences of x and y

3. Solve the new equation for y

4. Write the function using f−1(x) = · · · instead of y = · · ·

For example, assume that f(x) =
x+ 1

x+ 2
for x > −2. To find the inverse f−1(x), do these steps.

Start by replacing f(x) with y:

y =
x+ 1

x+ 2

Then swap the x and y variables and solve for y:

x =
y + 1

y + 2

x(y + 2) = y + 1

xy + 2x = y + 1

2x− 1 = y − xy
2x− 1 = y(1− x)

2x− 1

1− x
= y

Finally, replace the y with f−1(x).

f−1(x) =
2x− 1

1− x
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Figure 12 shows the graphs of f and f−1. Notice again that the graphs of inverse functions are
reflections in the line y = x.

Figure 12: Inverse Functions are Reflections in y = x

2.14 Drawing and Analyzing Graphs with Your Calculator

Your graphing calculator can graph multiple functions and analyze the graphs to find mini-
mum, maximum, x-intercept, y-intercept, where functions intersect, and where the function has
“zeros” (which means where it intersects the x-axis, in other words, the line y = 0).

2.14.1 Drawing the Graph of a Function

On the TI-Nspire calculator, to draw a graph create a new document of type “Graph”. You can
type one or more functions that the calculator names f1(x), f2(x), etc. The checkbox next to
the function name indicates whether you want to show or hide the function in question. When
entering the equation, it is best to use the dedicated buttons on the calculator to enter common
constructs like ln(x), ex, or sinx to ensure the calculator understands what you mean.

2.14.2 Restricting the Domain of a Graph

When typing in a function to graph on the TI-Nspire, by using the “such that” symbol (vertical
bar), you can restrict the domain to limit the values of x for which the graph will be drawn.
Figure 13 shows entering the function x2 − x− 1 but restricting the domain to only between -2
and 2.

Figure 13: Restricting the Domain of a Graph Using the “Such That” Vertical Bar
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2.14.3 Zooming Graph to See Exactly What You Want

After you’ve graphed a function, use the “Window/Zoom” option to scale the graph to see the
portion you care to work with. The easiest option to use is the combination of “Zoom - Out”
and then “Zoom - Box”. Zoom out until you see all of the graph you care about, then zoom to
the box that you want to fill the screen. You click in the upper left and lower right corners to
define the bounding box of what you’d like to see in the window. Figure 14 shows the graph

of
x3 − 16x

x2 + 1
after first zooming out, and then zooming to a box to define the exact area to display.

NOTE: If you select a rectangular box with different width and height, then the calculator
will scale the axes differently to make it fit the window. For this reason, if possible, it’s best
to select a box that is roughly square in shape so the axes will maintain the same scale.

Figure 14: Graph After Zooming Out and then Zooming to Box

2.14.4 Finding a Maximum Value in an Interval

To find the maximum value of a graph in a given interval, use the “Menu” button to pick the
“Analyze Graph →Maximum” option. You need to pick a lower bound and a higher bound of
an interval in which the calculator should determine the maximum value. When the calculator
prompts to you to pick a “lower bound?” you click to position the slider just to the left of the
point that visually appears to be the local minimum. Next, as shown in Figure 15, when it
prompts you to pick an “upper bound?” you click to position the slider just to the right of that
minimum. Once you’ve done this, the calculator adds the (x, y) coordinates of the maximum
point in that interval to the graph.
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Figure 15: Selecting the Upper Bound in Which to Determine the Maximum

2.14.5 Finding a Minimum Value Value in an Interval

To find the minimum value of a graph in a given interval, use the “Menu” button to pick the
“Analyze Graph →Minimum” option. The steps after that are similar to those in Section 2.14.4,
“Finding a Maximum Value in an Interval”. Figure 16 shows the graph from the previous section
after analyzing it to find both the maximum and the minimum values

Figure 16: Graph Showing Minimum and Maximum Points

2.14.6 Finding the x-Intercepts or “Zeros” of a Graph in an Interval

To find the points where a graph crosses (or intercepts) the x-axis, for each x-intercept you see
in the graph, repeat the following steps. Use the “Menu” button to pick the “Analyze Graph
→Zero” option. Then click to define the lower and upper bounds of the interval around the
zero you want to identify. The calculator will add that zero to the graph. Figure 17 shows
the graph from the previous section after having repeated the “Analyze Graph →Zero” option
three times.
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Figure 17: Graph Showing Zero Points

2.14.7 Finding the y-Intercept of a Graph

To find the points where a graph crosses (or intercepts) the y-axis, use the “Trace →Graph
Trace” option. You could use the arrow keys and press [enter] to place points on the graph,
but it’s even easier to just type the value of x whose function value you want to see in the
trace. Since we are looking for the y-intercept, that will be when the value of x = 0. Therefore,
after picking the trace option, type the [0] key and press [enter] twice, followed by [esc] to
signal you’re done adding trace points. As shown in Figure 18, which uses a slightly different
equation for the graph to have a more interesting y-intercept, it places the (x, y) coordinate
of the y-intercept on the graph. In your own work, when using the “Graph Trace” feature to
add points to a curve, keep in mind that if you have multiple functions on your graph that you
can use the up and down arrow keys to select which graph you want to trace before entering a
particular x value for which to trace/plot a point.

Figure 18: Graph Showing Y-Intercept Point

2.14.8 Vertical Asymptotes

To find vertical asymptotes, analyze where the function would be undefined. Typically this will
be the value(s) of x that will make the expression in the denominator equal zero.

Consider the function
2x2 − 3x− 6

x2 − 4
. To find the values of x that make the denominator zero

and cause the function to be undefined, solve the equation:

x2 − 4 = 0

(x+ 2)(x− 2) = 0
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So x = 2 or x = −2. As shown in Figure 19 the graph of this function has vertical asymptotes
as x = 2 and x = −2.

Figure 19: Graph with Two Vertical Asymptotes at −2 and 2

2.14.9 Graphing Vertical Lines

If you want to add a vertical line to a graph (perhaps to illustrate a vertical asymptote), the
way you do it on the Nspire calculator is to choose:

“Graph Entry/Edit →Equation →Line →Vertical Line x = c”

Then you enter the value of x that you want the vertical line to pass through. After repeating
this for the values x = 2 and x = −2 and using the graph attributes to make the line dotted,
you end up with the graph in Figure 20.

Figure 20: Dotted Vertical Lines Showing Vertical Asymptotes of Another Graph

2.14.10 Horizontal Asymptotes

Horizontal asymptotes occur when the function value approaches a fixed number as the value
of x increases without bound, or decreases without bound. Said another way, as x→∞ if f(x)
gets closer and closer to some value a but never reaches it, then say that the function f(x) has
a horizontal asymptote at y = a. The way we determine whether such a value a exists is to
consider the limit of the function as x→∞ and as x→ −∞.

Consider the function in Figure 20,
2x2 − 3x− 6

x2 − 4
. When we take the limit of this function

as x → ∞, the highest powers of x in the numerator and denominator make a difference. So,
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we can ignore the lower powers of x when thinking about the limit.

lim
x→∞

2x2 − 3x− 6

x2 − 4
= lim

x→∞

2x2

x2
= 2

The same limit occurs if we let x → −∞ because the even powers of x cause the result to be
positive like before. So in both cases, the limit as x→ ±∞ is 2. So the graph of this function
has a horizontal asymptote at y = 2.

2.14.11 Tips to Compute Horizontal Asymptotes of Rational Functions

While calculating the limit for x → ±∞ in in Section 2.14.10, “Horizontal Asymptotes”, we
looked only at the highest power of x in the numerator and the denominator, since its value
will dominate as x gets larger and larger. In that section’s example, the highest power in the
numerator and denominator was the same (i.e. 2) so these canceled out and the value of the
limit was given by the ratio of the coefficients. However, if the numerator’s highest power of x
is larger than the denominator’s highest power of x, then there is no limit. That is, the limit
will be ∞ because the numerator gets larger faster than the denominator. In contrast, if the
numerator’s highest power of x is smaller than the denominator’s highest power of x, then the
limit is zero (0) since the denominator gets larger faster than the numerator.

2.14.12 Graphing Horizontal Lines

If you want to add a horizontal line to a graph (perhaps to illustrate a horizontal asymptote),
the way you do it on the Nspire calculator is to choose:

“Graph Entry/Edit →Equation →Line →Line Slope Intercept x = c”

Then you enter the value of zero (0) in the first box as the coefficient for x and the value
a that you want the y-intercept to be. After doing this for the values y = 0 · x + 2 and using
the graph attributes to make the line dotted, you end up with the graph in Figure 21.

Figure 21: Dotted Vertical Lines Showing Vertical Asymptotes of Another Graph

2.14.13 Symmetry: Odd Functions

A function f that is symmetric about the origin is called an odd function. For each x in the
domain of f , an odd function satisfies the condition that f(−x) = −f(x). That is, if you put
in the value −5 for example, you get the opposite (i.e. negative) of the value you would get if
you put positive 5 into the function. For an odd function, this happens for any value of x.

The functions are called “odd” because this effect occurs for some functions where the highest
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power of x is an odd number. Not all such equations are odd functions, however. A line that
passes through the origin is an odd function. The power on the x in a linear equation is the
odd number 1. A cubic equation that passes through the origin is also an odd function. The
power on the x in a linear equation is the odd number 3. Figure 22 shows examples of a linear
and cubic equation that are odd functions because they are symmetric about the origin.

Figure 22: Linear and Cubic Equations Through the Origin are Odd Functions

2.14.14 Symmetry: Even Functions

A function f that is symmetric about the y-axis is called an even function. For each x in the
domain of f , an even function satisfies the condition that f(−x) = f(x). That is, if you put in
the value −5 for example, you get the same value you would get as if you put positive 5 into
the function. For an even function, this happens for any value of x.

The functions are called “even” because this symmetry effect occurs for some functions where
highest power of x is an even number. Not all such equations are even functions, however. An
absolute value function can be an even function, as well as a quadratic equation if its vertex lies
on the y-axis. Figure 23 shows examples of a linear and cubic equation that are odd functions
because they are symmetric about the origin.

Figure 23: Absolute Value and Quadratic Examples of Even Functions

2.14.15 Solving Equations Graphically

Very often we are presented with two functions and asked to find the value x that makes both
functions equal. Of course, for some situations, we have existing techniques to find the solution.
If both functions are lines, we can use substitution to solve the system of linear equations. Even
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if both functions are quadratic like:

f1(x) = x2 − x− 4

f2(x) = 6x2 + x− 10

we can create an equation by setting the function f1(x) equal to the function f2(x) and then
solve this equation like any quadratic we’re familiar with:

x2 − x− 4 = 6x2 + x− 10

0 = 5x2 + 2x− 6

Then we use the quadratic formula (with a = 5, b = 2, and c = −6) to find the two values of x
that solve the equation:

x =
−2±

√
22 − 4 · 5 · (−6)

2 · 5

=
−2±

√
124

10

=
−2± 11.136

10
= −1.314 or 0.914

However, if you don’t have an easy analytic way to solve the equation involving the two func-
tions, then fall back to using a surefire visual technique using your graphing calculator to get
the solution. When presented with two functions f1(x) and f2(x), of course their graphs may
or may not intersect. If they do intersect, then this means that those points of intersection
belong to both graphs. In other words, when function f1(x) and f2(x) intersect at the point
(p, q), that means that f1(p) = q = f2(p). Therefore, finding where the two functions intersect
is a graphical way to solve the equation f1(x) = f2(x).

Consider the two non-trivial equations below:

f1(x) =
1

2
x5 − 4x3 + x+ 7

f2(x) = ex + 5

Even if we set these two equations equal, we don’t know any analytical techniques to solve
for x. Here, the graphing calculator comes to the rescue. We simply graph f1(x) and f2(x)
and use the calculator’s “Analyze Graph →Intersection” feature to compute the coordinates of
the points where the two functions intersect. The x coordinate values of these point we can
find visually in this way are the solutions to the equation f1(x) = f2(x). The feature works
similarly to finding the minimum, maximum, or zero points. The calculator asks you to indicate
the lower bound and upper bound of an interval in which you want its help in computing the
intersection. You can repeat the process for each of the places that your eyes see the graphs
cross. Figure 24 shows the result of following this procedure to compute the coordinates of the
three places where f1(x) = f2(x). The solutions to this equation are the x values from the
three coordinates: x ∈ {−2.81, 0.59, 3.02}.
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Figure 24: Finding Points where f1(x) = f2(x) Graphically

NOTE: If your two curves intersect in multiple points, instead of repeatedly using “Analyze
Graph →Intersection” try the “Geometry →Points & Lines →Intersection Point(s)” instead.
After clicking on two curves on your graph, this alternative finds all their points of intersection
in a single command.

2.15 Transformations of Graphs

There are four main kinds of transformations you can do to a graph:

1. Translate it a given number of units horizontally and/or vertically

2. Reflect it in the x-axis or the y-axis

3. Vertically Stretch it by a given factor

4. Horizontally Stretch is by a given factor

Each of these transformations corresponds to an analytical change that you make to the original
function’s definition to achieve the modification to the graph. The following sections describe
each one in turn.

2.15.1 Horizontal and Vertical Translations

Given a function f(x), to translate it b units to the right, use f(x− b). To translate it b units to
the left, use f(x− (−b)) = f(x+ b). Figure 25 shows these two kinds of horizontal translation.
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Figure 25: Horizontal Translation of f1(x) to Left and Right

Given a function f(x), to translate it b units up, use f(x) + b. To translate it b units down, use
f(x) + (−b) = f(x)− b. Figure 26 shows both kinds of this vertical translation.

Figure 26: Vertical Translation of f1(x) Up and Down

2.15.2 Vertical Reflection

Given a function f(x), to reflect it vertically – causing what was “up” to become ”down” –
multiply the function by negative one. In other words, use −f(x). The line of symmetry
around which you reflect the function will be a horizontal line of symmetry, parallel (or in some
cases, exactly equal to) the x-axis.

Figure 27: Reflection of f1(x) in the x-axis
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2.15.3 Horizontal Reflection

Given a function f(x), to reflect it horizontally – causing what was “left” to become ”right”
– multiply the input to the function by negative one. In other words, use f(−x). The line of
symmetry around which you reflect the function will be a vertical line of symmetry, parallel (or
in some cases, exactly equal to) the y-axis.

Figure 28: Reflection of f1(x) in the y-axis

2.15.4 Vertical Stretch

Given a function f(x) to stretch it by scale factor b in the vertical direction, use b · f(x). Notice
in the example in Figure 29 that if |b| > 1 then the deformation is a stretch. If |b| < 1 then the
deformation is a shrink (or squash).

Figure 29: Vertical Stretch of f1(x) by factor of 3 and 1
4

2.15.5 Horizontal Stretch

Given a function f(x) to stretch it by scale factor b in the horizontal direction, use f(
1

b
· x).

Notice in the example in Figure 30 that if |b| > 1 (meaning
∣∣1
b

∣∣ < 1) the deformation is a stretch.
If |b| < 1 (meaning

∣∣1
b

∣∣ > 1)the deformation is a shrink (or squash).
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Figure 30: Horizontal Stretch of f1(x) by factor of 3 and 1
4

2.15.6 Order Matters When Doing Multiple Transformations in Sequence

You can apply multiple transformation to a graph by applying the operations one after another.
As we’ll see, even in this very simple example, the order in which you carry out the operations
is important because changing the order can produce different results. For this example, we’ll
start with a function f(x) = x3 + 3x2 − 3 and try two different experiments:

1. Translate f(x) up by 5 units, then reflect the result in the x-axis

2. Reflect f(x) in the x-axis, then translate the result up by 5 units

To carry out the first experiment, use your graphing calculator to define f1(x) = x3 + 3x2 − 3.
Then define f2(x) = f1(x) + 5. This represents a vertical translation by 5 units and the new
function f2(x) represents the result of this transformation operation. Finally, define f3(x) =
−f2(x). This reflects the result of the first transformation in the x-axis. Figure 31 shows the
f3(x) graph that results from these two consecutive transformations in this order.

Figure 31: First Translate Up by 5, Then Reflect in x-axis

To carry out the second experiment, use your graphing calculator to change f2(x) = −f1(x).
This reflects the initial f1(x) function in the x-axis as the first transformation. Next, change
f3(x) = f2(x) + 5. This translates the result of the first transformation up by 5 units. Fig-
ure 32 shows the different resulting f3(x) function graph obtained by these two consecutive
transformations in this different order.
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Figure 32: First Reflect in x-axis, Then Translate Up by 5

2.15.7 Graphing the Result of a Sequence of Transformations

In this section we study an example of doing six operations in sequence to understand how to
graph the result of this combined transformation. Starting with the original function f(x) =
1
2x

2 − 4x+ 6, we’ll do the following six transformation operations in this order:

1. Translate left by 1 unit

2. Reflect in the y-axis

3. Stretch horizontally by factor of 2

4. Translate down by 2 units

5. Reflect in the x-axis

6. Stretch vertically by factor of 1
3 (resulting in a shrink/squash)

To carry out the work, we start by graphing the function f1(x) = 1
2x

2 − 4x+ 6, then we define
the following additional functions to correspond to the six operations in order:

1. f2(x) = f1(x+ 1) Translate left by 1 unit

2. f3(x) = f2(−x) Reflect in the y-axis

3. f4(x) = f3(12x) Stretch horizontally by factor of 2

4. f5(x) = f4(x)− 2 Translate down by 2 units

5. f6(x) = −f5(x) Reflect in the x-axis

6. f7(x) = 1
3f6(x) Stretch vertically by factor of 1

3 (resulting in a shrink/squash)

As you enter each equation, by default the calculator will graph them, but you can hide the
graphs of the interim functions f2, f3, f4, f5, and f6 to leave only the original graph f1(x)
and the final f7(x). The easiest way to hide the interim graphs is to revisit the function entry
area and uncheck the ones you don’t want to see. Figure 33 shows the result of graphing the
initial f1(x) function as well as the final f7 function.
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Figure 33: Function f7(x) Results After Six Transformation Operations to Function f1(x)

If you are required to state the resulting, simplified equation for the final transformed graph,
then you need to work backwards and in each step substitute the function with its definition
until you get back to an expression in x that you can simplify completely. The steps involved
to get the transformed equation in the above example go like this:

f7(x) =
1

3
f6 (x)

=
1

3
(−f5 (x))

=
1

3
(− (f4 (x)− 2))

=
1

3

(
−
(
f3

(
1

2
x

)
− 2

))
=

1

3

(
−
(
f2

(
−1

2
x

)
− 2

))
=

1

3

(
−
(
f1

(
−1

2
x+ 1

)
− 2

))
=

1

3

(
−

(
1

2

(
−1

2
x+ 1

)2

− 4

(
−1

2
x+ 1

)
+ 6− 2

))

=
1

3

(
−
(

1

8
x2 − x

2
+

1

2
+ 2x

))
f7(x) = − 1

24
x2 +

x

2
− 1

6

2.15.8 Determining Point Movement Under a Sequence of Transformations

In this section we continue with the example from Section 2.15.7, “Graphing the Result of a
Sequence of Transformations”. To determine exactly where a sequence of transformations moves
a particular point on the original graph, we cannot simply take the x-coordinate of that original
point and put it in into the resulting, new function. To see why that does not work, let’s look
at an example. Figure 34 shows the vertex (4, 2) of the original f1(x) function. Intuitively by
translating and reflecting and stretching, the vertex of the original parabola should have moved
to the vertex of the resulting parabola. However, if we use the calculator’s “Graph Trace”
to add a point corresponding to (4, f7(4)), we see that the point on the resulting curve with
x-coordinate of 4 is not the new curve’s vertex. So, we need a different technique to get the
right answer.
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Figure 34: Visualizing Why Plugging in Original Point’s x-Coordinate Doesn’t Work

The correct way to determine where a particular point moves under sequence of transformations
is to consider what each transformation in the sequence does to the x-coordinate or the y-co-
ordinate of that point. The approach works for any point, but let’s use our original parabola’s
vertex (4,−2) as the example whose progress we follow through each step of the sequence of
transformations. In each step below, we adjust either the x-coordinate or the y-coordinate
based on what the current transformation would do to it. Horizontal translations or stretches
only affect the x-coordinate. Vertical translations or stretches only affect the y-coordinate. A
reflection in the x-axis flips the sign of the y-coordinate. A reflection in the y-axis flips the sign
of the x-coordinate.

Starting with our vertex point (4,−2), we proceed to record that each transformation step
does to its coordinates:

1. (4,−2)→ ( 3 ,−2) Translate left by 1 unit

2. (3,−2)→ ( −3 ,−2) Reflect in the y-axis

3. (−3,−2)→ ( −6 ,−2) Stretch horizontally by factor of 2

4. (−6,−2)→ (−6, −4 ) Translate down by 2 units

5. (−6,−4)→ (−6, 4 ) Reflect in the x-axis

6. (−6, 4)→ (−6,
4

3
) Stretch vertically by factor of 1

3 (resulting in a squash)

After repeating the same steps for the graph’s y-intercept point (0, 6) and the graph’s two zeros
at (2, 0) and (6, 0), Figure 35 shows the result which looks a lot more intuitive. The original
y-intercept of f1 at (0, 6) is mapped by the six-step transformation to the point (2,−4

3) on the
resulting f7 curve. The original zeros of f1 at (2, 0) and (6, 0) are mapped to points on the
resulting curve that are no longer on the x-axis.
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Figure 35: Vertex, y-intercept, and Zeros of f1 Plotted on Transformed f7

2.15.9 Vector Notation for Function Translation

As an alternative to expressing a translation in words like “function f is tranformed p units to
the right and q units up” sometimes you’ll see the translation expressed in vector notation like
this:

function f undergoes translation

p
q


The p is in the x-coordinate of the vector, so it represents the horizontal translation. A positive
number p in this notation means “translated p units to the right”. The q is in the y-coordinate
of the vector, so it represents the vertical translation. A positive number q in this notation
means “translated q units up”.

Let’s consider an example that uses this vector notation and asks to follow a specific point
through a transformation of functions. Let f and g be functions such that g(x) = 2f(x+1)+5.
The graph of f is mapped to the graph of g under the following transformations:

vertical stretch by a factor of k, followed by a translation

p
q

.

First, write down the values of k, p, and q. Then, consider the function h(x) = −g(3x). The
point A(6, 5) on the graph of g is mapped to the point A′ on the graph of h. Find A′.

Looking at the function g(x), we see that starting with the original f(x) that it has been:

1. translated horizontally left by 1 → f(x− (−1))

2. stretched vertically by 2 → 2f(x− (−1))

3. translated vertically up by 5 → 2f(x− (−1)) + 5

So this tells us that k = 2, p = −1, and q = 5. Next, we look closely at the definition of h(x)
in terms of g(x). We see that it has been:

1. g(3x) → stretched horizontally by 1
3

2. −g(3x) → reflected in the x-axis
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NOTE: In step 1 above, recall from Section 2.15.5, “Horizontal Stretch” that to stretch f(x)
horizontally by a factor of b, we multiply the argument of the function by the reciprocal of b.
That is, f(1bx). Therefore if we see h(x) = g(3x), this means that 1

b = 3 and therefore b = 1
3 .

In other words, if the function h(x) = g(3x) then in words we say that “h(x) has horizontally
stretched g(x) by a factor of 1

3 . When you “stretch” something by a factor less than one, it
is sometimes called a “squash”.

We now use this information to follow what happens to our original point A(6, 5) on g(x) under
the ordered steps of this transformation that produces the new function h(x).

1. (6, 5)→ ( 2 , 5) stretched horizontally by 1
3

2. (2, 5)→ (2, −5 ) reflected in the x-axis

Figure 36 illustrates three possible functions f , g, and h that satisfy this example, calling them
f1, f2, and f3, respectively. It also depicts the original point A and the resulting point A′.

Figure 36: Original Function f1 and Transformed Functions f2 and f3

2.16 Quadratic Functions

Quadratic functions have the form f(x) = ax2 + bx + c where a, b, and c are real number
constants. The coefficient of the x2 term needs to be non-zero or else the function would be a

linear function, not quadratic. Figure 37 shows the graph of the quadratic function
1

2
x2−4x+6.

Figure 37: Example of a Quadratic Function
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2.16.1 Using the Quadratic Formula to Find Zeros of Quadratic Function

The quadratic formula gives an explicit way to compute the zeros of (i.e. solutions to) any
quadratic equation ax2 + bx + c = 0. The zeros are always a formula of the coefficients a, b,
and c as follows:

x =
−b±

√
b2 − 4ac

2a

In the example function shown in Figure 38, we have a =
1

2
, b = −4, and c = 6, so the values

of its zeros using the quadratic formula are:

x =
−(−4)±

√
(−4)2 − 4 · 12 · 6

21
2

=
4±
√

16− 12

1

= 4±
√

4

= 4± 2

Therefore, x = 4− 2 = 2 or x = 4 + 2 = 6.

Figure 38: Two Distinct Zeros of Quadratic Function Found Using Quadratic Formula

2.16.2 Finding the Vertex If You Know the Zeros

Suppose that you already know the zeros x1 and x2 of a quadratic equation, by any of the
following means:

• You factored it and determined which values of x make each factor zero

• You used the quadratic equation

• You read off the values because the function was already in x-intercept form

Then, it is very easy to find the x-coordinate of the vertex.

• If there is only a single root (also known as “two equal roots”), then that root is the
x-coordinate of the vertex.

• If there are two distinct roots, then the vertex is halfway between the two roots. To find
the point that is halfway between the roots, just take the average of the roots: add them
together and divide by two.

Once you have the x-coordinate of the vertex, call it h, compute the y-coordinate k of the vertex
by computing f(h).
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2.16.3 Graph and Axis of Symmetry

The graph of a quadratic function forms a parabola, and it is symmetric about the vertical line
x = h that passes through its vertex (h, k). We can derive information about the symmetry of
the function by rearranging the quadratic formula from Section 2.16.1, “Using the Quadratic
Formula to Find Zeros of Quadratic Function”. If we separate the two terms in the numerator
by writing each as a fraction over the common denominator of 2a, we get:

x =
−b±

√
b2 − 4ac

2a

x =
−b
2a
±
√
b2 − 4ac

2a

This tells us that the zeros are always computed by taking the quantity
−b
2a

and adding to it

or subtracting from it the same quantity

√
b2 − 4ac

2a
. This means that the axis of symmetry for

any quadratic function will always be the line x =
−b
2a

. Figure 39 shows the axis of symmetry

of the function
1

2
x2 − 4x+ 6 lies on the line:

x =
−b
2a

=
−(−4)

2(12)
=

4

1

x = 4

Figure 39: Quadratic Function’s Axis of Symmetry x =
−b
2a

2.16.4 Computing the Vertex From the Coefficients

Since the parabola is symmetric about its vertex, and in Section 2.16.3, “Graph and Axis of

Symmetry” we learned that a quadratic function’s axis of symmetry is always the line x =
−b
2a

,

we can infer an easy way to calculate the coordinates of its vertex. The vertex lies on the line

of symmetry, so its x-coordinate must be
−b
2a

. But the vertex lies on the function f(x)’s graph,

so that means that the y-coordinate of the vertex must be the function f ’s value at this point

x =
−b
2a

.

Therefore, for any quadratic function f(x), its vertex is at

(
−b
2a
, f

(
−b
2a

))
.
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Since for any quadratic function we have f(x) = ax2 + bx + c, if we evaluate f(− b

2a
), we

get:

f(− b

2a
) = a

(
− b

2a

)2

+ b ·
(
− b

2a

)
+ c

= a · b
2

4a2
− · b

2

2a
+ c

=
b2

4a
− b2

2a
+ c

=
b2 − 2b2

4a
+ c

= c− b2

4a

So, the vertex of any quadratic function is at the coordinates

(
− b

2a
, c− b2

4a

)
.

2.16.5 Using the Discriminant to Find the Number of Zeros

In Section 2.16.3 we rewrote the quadratic equation from Section 2.16.1, “Using the Quadratic
Formula to Find Zeros of Quadratic Function” in the equivalent form:

x =
−b
2a
±
√
b2 − 4ac

2a

The second term of this expression (i.e. after the ± sign) includes a square root with the
expression b2 − 4ac under it. Since you can’t take the square root of a negative number, we
know that the square root function is only well-defined when b2 − 4ac ≥ 0. This quantity
under the square root of the quadratic formula is called the discriminant, because as we’ll see
in this section, its value helps us discriminate between three possible situations for the zeros of
a quadratic function:

1. There are two distinct zeros

2. There is a single zero (vertex lies on x-axis), also known as having “two equal zeros”

3. There is no zero (parabola never intersects x-axis)

If the discriminant (b2−4ac) is greater than zero, then the second term of the expression above
is non-zero, and therefore the quadratic function has two distinct zeros that are obtained by tak-

ing the quantity
−b
2a

and adding to it and subtracting from it, the non-zero quantity

√
b2 − 4ac

2a
.

This is the case in Figure 38.

If the discriminant (b2 − 4ac) equals zero, then the second term of this expression evaluates
to zero, which means then that the zeros of the function are:

x =
−b
2a
± 0

x =
−b
2a

In this case, the parabola only has a single zero. Another way you will see this stated is that
that parabola has “two equal zeros” or “two equal roots”. This corresponds to the graph where
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the vertex lies right on the x-axis. Figure 40 shows an example of a quadratic function with a
single zero. Its discriminant is:

b2 − 4ac = 182 − 4 · 1 · 81 = 324− 324 = 0

Figure 40: Quadratic with Discriminant = 0 has Single Zero (or “Two Equal Zeros/Roots”)

Finally, if the discriminant (b2 − 4ac) is less than zero, then the square root in the second term
of the expression above is undefined, so there are no zeros. As shown in Figure 41, its graph
never intersects the x-axis.

Figure 41: Quadratic Function with Negative Discriminant has No Zeros

2.16.6 Y-Intercept Form

The standard way of writing a quadratic function, f(x) = ax2+bx+c, is called the “Y-Intercept
Form” because in this form you can easily read off the value of y where the function intercepts
(i.e. crosses) the y-axis. Since the y intercept is the point where x = 0, if we evaluate f(0) =
a · 02 + b · 0 + c = c we see that the y intercept is just the coefficient c of the units term. By
following the steps explained in Section 2.14.7, “Finding the y-Intercept of a Graph”, we can
easily plot the y-intercept of the example quadratic function in Figure 42. We see that the
y-coordinate of the y-intercept is just the coefficient 6 from its units term, as expected.
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Figure 42: Quadratic Function with y Intercept Point

2.16.7 X-Intercept Form

In order to put a quadratic equation into a form that makes it easy to read off the x-intercepts
of the function, we need to factor the original expression ax2 + bx + c into a form that looks
like a(x− p)(x− q), where p and q are the two roots (i.e. “zeros” or solutions) of the quadratic
equation. We can do this mechanically by first using the quadratic formula to find the roots p
and q, and then rewriting the original quadratic equation as a(x−p)(x−q). Another possibility
is to factor out the constant a that is the coefficient of the x2 term, and then try to factor the
remaining quadratic expression that will now start with x2.

The reverse is of course also true. If you see a quadratic equation that is already in the
x-intercept form, you can just read off the values of the zeros p and q. For example, if
f(x) = 17(x − 10)(x + 3), then to find the zeros consider 17(x − 10)(x + 3) = 0 which can
only be zero if either (x − 10) = 0 or else if (x + 3) = 0. Therefore, x = 10 or x = −3.
Those were numbers you can immediately see when the quadratic expression is written in the
x-intercept format.

Given the example function f(x) =
1

2
x2 − 4x+ 6 from Figure 42, let’s rewrite it in x-intercept

form for practice:

1

2
x2 − 4x+ 6 =

1

2

(
x2 − 8x+ 12

)
Start by factoring out the coefficient of the x2 term

=
1

2
(x− 6) (x− 2) Factoring is straightforward, so we don’t need quadratic formula

So, the x intercepts are 6 and 2 and the equivalent x-intercept form of the original function is
therefore:

1

2
x2 − 4x+ 6︸ ︷︷ ︸

y-Intercept Form

=
1

2
(x− 6) (x− 2)︸ ︷︷ ︸
x-Intercept Form

When written in this x-intercept format, we can easily read off that the zeros of the function are
6 and 2, which matches the results we found using the quadratic formula as shown in Figure 38.

2.16.8 Completing the Square to Get Binomial Squared Form

“Completing the square” is a procedure that you can follow to rewrite any quadratic function
in a form that includes a squared binomial (x− h)2. The procedure goes like this:
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ax2 + bx+ c Start with the equation in standard y-intercept form(
ax2 + bx

)
+ c Group the x2 and x terms with parentheses

a

(
x2 +

b

a
x

)
+ c Factor out a from the group

a

(
x2 +

b

a
x+

(
b

2a

)2
)

+ c−a
(

b

2a

)2

Add constant inside, subtract constant outside

a

(
x+

b

2a

)2

+

(
c− b2

4a

)
Factor into square binomial and simplify

a

(
x−

(
−

b

2a

))2

+

(
c− b2

4a

)
Rewrite to see x = − b

2a
coordinate of vertex

In the fourth step above, the constant

(
b

2a

)2

that we add inside of the x2 and x group is the

square of one half of the coefficient of the x term
b

a
. We add this strategic value because in

general, when you square the binomial (x+ q), you get the expression (x+ q)2 = x2 +2q ·x+ q2.
The units term q2 is the square of one half of the coefficient of the x term (= 2q). So the number
we add inside the group is the one that must be there in order to use this squaring-a-binomial
rule in reverse to factor it back to the binomial square form. However, if we introduce a term
being added somewhere in the original expression, we also have to subtract that same quantity
somewhere else in the expression to avoid inadvertently changing the meaning of the original
expression. Notice that the a has been factored out of the x2 and x group parenthesis so any-
thing added inside the parenthesis is really being multiplied by a as well. This is why we have

to subtract the quantity a

(
b

2a

)2

from the constant c outside of the group to avoid changing

the original expression.

So, for any quadratic equation, we have the following equality with standard y-intercept form
on the left of the equals sign and “binomial squared” form on the right:

ax2 + bx+ c = a

(
x−

(
−

b

2a

))2

+

(
c− b2

4a

)
2.16.9 Vertex (h, k) Form

We saw in Section 2.16.4, “Computing the Vertex From the Coefficients” that the vertex of a

quadratic function was at the point

(
− b

2a
, c− b2

4a

)
. We also saw in Section 2.16.8, “Completing

the Square to Get Binomial Squared Form” that a quadratic function in standard y-intercept
form can be written as:

a

(
x−

(
− b

2a

))2

+

(
c− b2

4a

)

The quantity being subtracted from x in the expression above − b

2a
is none other than the

x-coordinate of the vertex we see just above. Likewise, the quantity being added to the binomial
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squared term

(
c− b2

4a

)
is exactly the y-coordinate of the vertex. So, if we let:

h = − b

2a

k = c− b2

4a

then we can write any quadratic equation in the following form, where h and k are the x-and
y-coordinates respectively of the function’s vertex:

ax2 + bx+ c = a (x− h)2 + k

This form is called the vertex form of a quadratic function.

Given the example function f(x) =
1

2
x2 − 4x + 6 from Figure 42, let’s rewrite it in vertex

form for practice. Start by identifying the coefficients:

a =
1

2
b = −4

c = 6

Next we compute the h-and k-coordinates of the vertex using the formula we learned above:

h = − b

2a
= − −4

2 · 12
= 4

k = c− b2

4a
= 6− (−4)2

4 · 12
= 6− 16

2
= 6− 8 = −2

So, the vertex is at point (4,−2) and the equivalent vertex form of the original function is
therefore:

1

2
x2 − 4x+ 6︸ ︷︷ ︸

y-Intercept Form

=
1

2
(x− 4)2 − 2︸ ︷︷ ︸
Vertex Form

2.17 Reciprocal Functions

Reciprocal functions are of the form f(x) = k
x where k is some constant. Their graph is a

hyperbola with two curving branches having both a horizontal and vertical asymptote. They
are symmetric around the line y = x, which makes them their own inverse function. If k > 0
then the curving branches of the function are in quadrants I and III as shown in Figure 43. If
k < 0, then they are instead in quadrants II and IV.

Figure 43: Reciprocal Function is a Hyperbola
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2.18 Rational Functions

Rational functions are the quotient of two linear functions and have the form
ax+ b

cx+ d
. Like

reciprocal functions, they have a horizontal asymptote and a vertical asymptote. Following the
rules we learned in Section 2.14.8, “Vertical Asymptotes”, we can compute that the vertical
asymptote must exist where the denominator cx + d = 0. Therefore the vertical asymptote is

the line x = −d
c

. Following the rules we learned in Section 2.14.10, “Horizontal Asymptotes”,

we can determine that the a horizontal asymptote must be the line y =
a

c
. The x intercept will

occur when the numerator ax + b = 0, so we can compute that the x intercept is at x = − b
a

.

By evaluating the function at x = 0 we can find that the y-intercept is
b

d
. Figure 44 shows an

example of a rational function.

Figure 44: Rational Function is a Hyperbola with Asymptotes Away from the Axes

2.19 Exponential Functions

Exponential functions have the form f(x) = kamx for some constants a (the base) and coeffi-
cients k and m. Very frequently the base e is used, since it occurs in formulas relating to the
growth and decay of processes in nature and in the business world. As shown in Figure 45, for
positive values of m, the graph models growth. The values of the function get larger and larger
as x gets larger. When m > 1, the larger the value, the more steep the growth. When values
0 < m < 1, then the function shows slower, flatter growth. When the value of m is negative,
this models decay instead of growth since the values of the graph get smaller and smaller as x
increases.

Figure 45: Examples of Exponential Functions Having Base e
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Recall from Section 1.16, “Using Logarithms to Solve Equations” that we can exploit the fact
that these the ex and ln functions are inverses to help solve problems. Consider an example
equation like:

1234e0.19x = 20000

The variable x whose value we seek to solve for is “trapped” up in the exponent of the base
e. We can free it from that position by applying the appropriate inverse function, the natural
logarithm ln(x) in this case, to both sides of the equation:

1234e0.19x = 20000

e0.19x =
20000

1234
≈ 16.2075

ln
(
e0.19x

)
= ln 16.2075

0.19x = 2.7855

x = 14.6604

2.20 Continuously Compounded Interest

In section Section 1.13, “Applications: Compound Interest” you saw how to calculate compound
interest A(t) after t years, at a rate of r for a discrete number of periods n in a year:

A(t) = P ·
(

1 +
r

n

)n·t
If you let the number of compounding periods n in a year increase without bound, you arrive
at the concept of continuously compounded interest. In this model, your money is continuously
earning tiny amounts of additional interest as time moves forward. These types of continually
compounded growth (or decay, in the case of losing money) are modeled by exponential functions
using the base of the natural logarithm e. The formula for what sounds like an even more
complex concept, continuosly compounded interest, is actually even simpler than the formula
for the discrete compounding case. It is:

A(t) = P · ert

where r is again the rate of interest and t is the time in years.

2.21 Continuous Growth and Decay

Many natural processes exhibit continuous growth or decay. Two examples are population
growth and the decay of radioactivity in a given material. These processes of continuous growth
or decay are modeled using essentially the same exponential equation as for continuously com-
pounded interest. You start out with some initial quantity C of some entity (people, radioactive
particles, etc.), and a rate r, then the amount of the entity after t units of time is given by:

A(t) = C · ert

2.22 Logarithmic Functions

Logarithmic functions have the form f(x) = k · logbx. For a given base b, the function f(x) =
logbx is the inverse function of the exponential function f(x) = bx. So, y = logbx if and
only if by = x. Many natural processes model their continuous growth or decay based on the
exponential function in Section 2.21, “Continuous Growth and Decay”. Since this uses the base
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e, the natural logarithm (logex usually written lnx) is it’s inverse. Figure 46 shows how the
graphs of ex and ln(x) are reflections in the line y = x, which means they are inverse functions.

Figure 46: Exponential Base ex and Natural Logarithm ln(x) are Inverse Functions

Recall from Section 1.17, “Using Exponentiation to Solve Equations” that if we have an equation
involving a logarithm, where the variable x whose value we seek is “trapped” inside the log
function, then we can free it from that position by raising an appropriate base to the power
represented by each side of the equation. If the two sides were equal before, then so will be the
same base raised to equal powers. Consider the example:

25 ln (0.35x) = 200

First we isolate the ln(0.35x) by dividing both sides by 25:

25 ln (0.35x) = 200

ln (0.35x) =
200

25
= 8

Next, we write a new equation involving the base e of the natural logarithm on both sides:

e
· · ·

= e
· · ·

Since we know that the two expressions that we will write into the boxes as exponents on the
base e are equal already, we can conclude that result of raising e to those equal powers will also
be equal. Therefore, we can write:

eln(0.35x) = e8

0.35x = e8 ≈ 2980.958

x =
2980.958

0.35
= 8517.023
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3 Circular Functions and Trigonometry

3.1 Understanding Radians

This section motivates how radians provide an alternative to degrees in measuring the part of a
circular path that an angle represents. It explains how to compute the fraction of the complete
circular revolution to which this part corresponds. Finally, it shows how to convert back and
forth between radians and degrees.

3.1.1 Degrees Represent a Part of a Circular Path

The angle θ in Figure 47 represents the amount of rotation that would be required to bring one
intersecting line (or segment) in line with the other. About 2400 BC, the Sumerians observed
the planets and noticed that the Sun’s path across the sky took about 360 days to make one
year’s cycle. So, they divided this circular path into 360 degrees to track each day’s passage of
the Sun’s whole journey. These 360 degrees (written 360°) are still in use today as one way to
measure the amount of rotation in an angle. The degrees measuring the angle θ’s rotation are
some part of the total journey around the circle.

Figure 47: Angle is Rotation to Bring One Intersecting Segment in Line with the Other

3.1.2 Computing the Fraction of a Complete Revolution an Angle Represents

Knowing the total number of units that represent a complete circular trip, for example 360
degrees, you can use the part of the total journey divided by the total to calculate the fraction
of the overall journey the angle represents. For example, if θ measures 45°, then the fraction of

a total revolution that this rotation represents is
part

total
=

45°
360°

=
1

8
of the circular journey. Put

another way, after 45 days the Sumerian’s knew that their 360-day year was
1

8
over. So, while

the number 360 is a historical quantity, the key concept involved is that the angle represents
a part of a circular path and you can use this to calculate the fraction of a complete
revolution.

3.1.3 Attempting to Measure an Angle Using Distance

Another way to describe the angle θ would be to explain how far someone would have to walk
along a circular path to “push” one segment to be in line with another. Figure 48 shows this
idea. Imagine the same angle θ from Figure 47 with its vertex sitting at the center of a circle
and a man standing some small distance rs away from the vertex. Let this distance rs be the
radius of the circle. Suppose the segments of the angle are fixed with a pin at the center of this
circle that allows them to move like hands of a clock. If the man’s goal is to push the segment
closest to him to be in line with the other segment forming the angle, how far would he need to
walk around the circumference of this circular path? The answer is, “It depends on the radius
of the circle!” We know the formula for the circumference of a circle of radius rs is 2πrs, so a
walk around the entire circumference would be 2πrs units. But clearly the man wouldn’t need
to walk all the way around the circle to line up the segments, so he only needs to walk some
part of the circular path to get the job done.
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Figure 48: Rotation θ in Terms of Distance Walked Around a Circumference

If the man measures the distance ds that he walks, how can he determine what fraction of the
circular path he has traveled? A fraction always needs a part quantity in the numerator and a
total or “whole” amount in the denominator. In this example, the part value for the numerator
is the distance dsthe man walked. The quantity for the denominator’s total distance is the full
circumference of the circle 2πrs. Therefore, the fraction of the circular path that the man has

traveled is
part

total
=

ds

2πrs
.

What happens if the man moves a bigger distance rb (for “bigger”) away from the center
of the circle and repeats his walk? This time he will have to walk a greater distance db along
the circumference of the larger circle of radius rb. Using the same formula as above, we would

calculate the fraction of the circular path to be
part

total
=

db

2πrb
. Figure 49 shows the man’s longer

walk on his second attempt.

Figure 49: Man Walks Longer Along Circle with Larger Radius

Figure 49 also depicts his third attempt. That time he positions himself exactly one unit away
from the vertex, and walks a distance of du (for “unit”). On this third attempt, the fraction of

the circular path would be
part

total
=

du

2π · 1
=
du

2π
.

Therefore, using an arc distance alone is an ambiguous way to represent an angle because
the same angle θ can correspond to many different arc distances (du, ds, db), depending on how
far away from the vertex you measured the “walk” along the circular path.
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3.1.4 Arc Distance on the Unit Circle Uniquely Identifies an Angle θ

In Figure 49, since the angle θ hasn’t changed between the first walk of length ds, the longer
walk of length db, and the third walk of length du, the fraction of the circular path is still
the same as it was before. Therefore, we must have:

ds

2πrs
=

db

2πrb
=

du

2π · 1

We can multiple through by 2π to eliminate the common factor in all the denominators, in
order to reveal a very interesting observation.

2π · ds

2πr
= 2π · db

2πrb
= 2π · du

2π

��2π · ds

��2πr
= ��2π · db

��2πrb
= ��2π · du

��2π
ds

rs
=
db

rb
= du

In other words, for any radius other than 1, the ratio of the arc distance to the radius of its
circular path is equal to the arc distance du on the unit circle. This means that if we fix our
sights on only using the unit circle to measure angles, then the arc distance itself uniquely
identifies the angle θ. We define the radian measure of any angle θ to be this unambiguous arc
distance on the unit circle.

3.1.5 Computing the Fraction of a Complete Revolution for Angle in Radians

Radians measure the part of a circular path – specifically of the unit circular path – just like
degrees do. To compute the fraction of the complete revolution this represents, just divide the
number of radians by 2π, which represents the total distance around the circumference of the
unit circle. If you are given an arc distance for an angle and the radius is not equal to one, then
in order to compute the radian measure of the angle just divide the arc distance by the radius.
This normalizes the arc distance by scaling it to correspond to the unambiguous distance on
the unit circle.

3.2 Converting Between Radians and Degrees

For a given angle θ, θrad radians and θdeg degrees are different numbers that each corresponds to

the same part of a unit circular path. Correspondingly,
θrad
2π

and
θdeg
360

both represent the same

fraction of a complete revolution that the angle represents. We can use this fact to convert
between them.

3.2.1 Converting from Degrees to Radians

If an angle θ measures θdeg degrees, to convert it to radians:

• Determine the fraction of a complete revolution that θdeg represents by dividing it by 360.

• The measure in radians will be the same fraction of the total unit circle distance of 2π,
so multiply the fraction determined in the first step by 2π.
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Therefore to convert from degrees to radians, we have:

θrad =
θdeg
360︸︷︷︸

Fraction of

complete

revolution

× 2π︸ ︷︷ ︸
Circumference of

complete revolu-

tion of unit circle

= θdeg ·
2π

360
= θdeg ·

π

180︸ ︷︷ ︸
Radian measure

of partial distance

around unit circle

In short, to convert an angle θ in degrees to radians, multiply it by
π

180
. To remember the

right fraction to multiply by, think about the fact that you are “introducing π” when going
from degrees to radians, so the π goes in the numerator.

3.2.2 Converting from Radians to Degrees

If an angle θ measures θrad radians, to convert it to degrees:

• Determine the fraction of a complete revolution that θrad represents by dividing it by 2π.

• The measure in radians will be the same fraction of the total number of degrees 360, so
multiply the fraction determined in the first step by 360.

Therefore to convert from degrees to radians, we have:

θdeg =
θrad
2π︸︷︷︸

Fraction of

complete

revolution

× 360︸ ︷︷ ︸
Total degrees in

complete revolu-

tion of unit circle

= θrad ·
360

2π
= θrad ·

180

π︸ ︷︷ ︸
Degree measure

of partial rotation

around unit circle

In short, to convert an angle θ in radians to degrees, multiply it by
180

π
. To remember the

right fraction to multiply by, think about the fact that you are “removing π” when going from
radians to degrees, so the π goes in the denominator.

3.3 Length of an Arc Subtended by an Angle

When an angle θ has its vertex at the center of a circle, the angle determines (or “subtends”)
an arc on the circle as shown in Figure 50.

Figure 50: If Angle θ is in radians, Arc Length L = θ · r

Given a circle of radius r and an angle θ in radians, to compute the length of the arc subtended
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by the angle, do the following:

• Determine the fraction of a complete revolution that θrad represents by dividing it by 2π.

• The arc length L will be the same fraction of the circle’s total circumference, so multiply
the fraction determined in the first step by the circumference 2πr. This gives:

L =
θrad
2π︸︷︷︸

Fraction of

complete

revolution

× 2πr︸ ︷︷ ︸
Circumference

of the circle

= θrad ·
��2π · r
��2π

= θrad · r︸ ︷︷ ︸
Arc length

In short, given a circle of radius r and an angle θ in radians, the length of the arc subtended
by the angle is θr. If the angle θ is in degrees, then first convert it to radians by multiplying

by
π

180
then proceed to multiply that by the radius to calculate the arc length.

3.4 Inscribed and Central Angles that Subtend the Same Arc

The “Central Angle Theorem” is an important geometrical fact worth remembering that per-
tains to circles, angles, and arcs subtended by a central angle. Figure 51 illustrates that if
a central angle ∠AOB subtends an arc AB, then its measure θ is double the angle of any
inscribed angle ∠ACB or ∠ADB that subtends the same arc. Or, vice versa, the inscribed
angle’s measure is half of the measure of the central angle when they subtend the same arc of
the circle.

Figure 51: Central Angle is Double the Inscribed Angle that Subtends the Same Arc

3.5 Area of a Sector

When an angle θ has its vertex at the center of a circle, the angle’s segments and the arc it
subtends form a sector as shown in Figure 52.

Figure 52: If Angle θ is in radians, Area of Sector A = 1
2θ · r

2
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Given a circle of radius r and an angle θ in radians, to compute the area of the sector formed
by the angle, do the following:

• Determine the fraction of a complete revolution that θrad represents by dividing it by 2π.

• The area A of the sector will be the same fraction of the circle’s total area, so multiply
the fraction determined in the first step by the area πr2. This gives:

A =
θrad
2π︸︷︷︸

Fraction of

complete

revolution

× πr2︸ ︷︷ ︸
Area of the circle

= θrad ·
�π · r2

2�π
=

1

2
θrad · r2︸ ︷︷ ︸

Sector area

In short, given a circle of radius r and an angle θ in radians, the area of the sector formed

by the angle is
1

2
θr2. If the angle θ is in degrees, then first convert it to radians by multiplying

by
π

180
then proceed to multiply that by one half of the radius squared to calculate the arc

length.

3.6 Definition of cos θ and sin θ

Given the right triangle in Figure 53 with angles A and B and corresponding opposite side
lengths a and b, we define the sine function of an angle θ (written sin θ) as the ratio of the
length of the side opposite the angle to the hypotenuse and the cosine function of an angle θ
(written cos θ) as the ratio of the length of the side adjacent the angle to the hypotenuse.

Figure 53: Right Triangle with Angles A and B

Given this definition and the angles in Figure 53, we have:

sinA =
opp

hyp
=
a

c
cosA =

adj

hyp
=
b

c

sinB =
opp

hyp
=
b

c
cosB =

adj

hyp
=
a

c

These sin and cos functions are two of the three so-called trigonometric functions that we’ll
cover in this program. The word “trigonometry” comes from the Latin words “trigon” for three-
sided figure and “metry” for measurement. Trigonometric functions help measure interesting
relationships between the sides of a three-sided figure, the triangle. We’ll define the third
trigonometric function in Section 3.12, “Definition of tan θ”.
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3.7 Interpreting cos θ and sin θ on the Unit Circle

If we imagine the unit circle centered at the origin of the Cartesian plane, at any point (x, y)
on the circle we can drop a perpendicular line to the x-axis to form a right triangle. As shown
in Figure 54, the hypotenuse of this right triangle is always 1 unit because it is always a radius
of our unit circle. Notice that the two legs of the triangle are exactly the distances x and y that
are given by the point’s (x, y) coordinates. From angle θ’s point of view, the side of the triangle
that sits opposite it has length y, and the side that sits adjacent to it has length x. Using the
definition of the sine function from Section 3.6, putting these facts together we can derive the
following fact about the angle theta related to the unit circle:

sin θ =
opp

hyp
=
y

1
= y cos θ =

adj

hyp
=
x

1
= x

So as shown in Figure 54, any point on the unit circle has coordinates (cos θ, sin θ).

Figure 54: Right Triangle in Unit Circle with Angle θ

3.8 Radian Angle Measures Can Be Both Positive and Negative

From Section 3.1.4, “Arc Distance on the Unit Circle Uniquely Identifies an Angle θ”, we know
that radians are a measure of arc distance on the unit circle that corresponds to an amount of
rotation. By convention, a positive radian angle measure is a distance measured starting at the
point (1, 0) on the unit circle (and on the x-axis) and traveling in a counter-clockwise direction.
If instead the rotation is in a clockwise direction, then the radian angle measure is a negative
distance. Figure 55 shows a θpos angle with a positive radian measure representing a certain
amount of counter-clockwise rotation. It also shows a θneg angle with a negative radian measure
representing a different amount of clockwise rotation.

Figure 55: Right Triangle in Unit Circle with Angle θ
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3.9 Remembering the Exact Values of Key Angles on Unit Circle

It’s important to remember the cos and sin values for a number of key angles on the unit
circle because they are not in the formula booklet and you are expected to know them on the
non-calculator part of your exam. Figure 56 shows a visual approach using your left hand that
you can use to memorize the cos and sin values for five key angles in the first quadrant. First,
remember that the values are listed as cos, sin. That is, for each pair of values the cosine value
of the angle is first and the sine value of the angle is second. To keep it simple, remember
that all values have 2 in the denominator. The values in the numerator range from 0 to 4 and
they are all under a square root. Going in counter-clockwise order, the values for the cosine
numerators count down (

√
4,
√

3,
√

2,
√

1,
√

0 ). The values for the sine numerators count up
(
√

0,
√

1,
√

2,
√

3,
√

4 ). Of course, some of the values like
√

4,
√

1, and
√

0 simplify to 2, 1, and 0
respectively, but remembering the counting up and down pattern makes it easier to remember.

Figure 56: Using Your Hand to Remember Key cos and sin Values in First Quadrant

Once you know the values of the cos and sin functions for the five key angles in the first quadrant,
you can easily remember the values of the other key angles in the other three quadrants because
their cos and sin values are the same except for a strategically placed minus sign. Figure 57
shows the pattern of where the cos and sin function values are positive and negative. To calculate
the cos and sin values of key angles in quadrants II, III, and IV , just determine which angle in
the first quadrant should be its reflection in the x-axis or y-axis, remember the value from the
“hand” and then apply the minus sign where appropriate based on which quadrant the angle
falls in.

Figure 57: Positive/Negative Sign of cos and sin Values in Four Quadrants

Figure 58 shows cos and sin values for all key angles. Using the “hand” and “quadrant signs”
makes remembering all of the values as easy as counting on your fingers.

66



x

y

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

360◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

(√
3
2 ,

1
2

)
(√

2
2 ,
√
2
2

)
(
1
2 ,
√
3
2

)

(
−
√
3
2 ,

1
2

)
(
−
√
2
2 ,
√
2
2

)
(
−1

2 ,
√
3
2

)

(
−
√
3
2 ,−

1
2

)
(
−
√
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2
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(
1
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2
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(0,−1)
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Figure 58: Values of cos and sin for All Key Unit Circle Angles

3.10 The Pythagorean Identity

As shown in Figure 59, the right triangle formed in the unit circle with left-hand angle θ has
legs that measure cos θ and sin θ. Since it’s a right triangle, Pythagorean Theorem tells us that
the sum of the squares of the legs equals the square of the hypotenuse. This gives rise to the
Pythagorean Identity for cos and sin that cos2 θ + sin2 θ = 1.

Figure 59: Pythagorean Identity for cos and sin
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3.11 Double Angle Identities

The formula booklet lists two additional handy identities that can be used to calculate the cos
or sin of a “double angle” 2θ if you already know the cos θ and sin θ. You will use these identities
to substitute one expression for another while solving equations involving sin and cos functions.

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

sin 2θ = 2 cos θ sin θ

3.12 Definition of tan θ

In addition to the two functions defined in Section 3.6, “Definition of cos θ and sin θ”, the
tangent function is a third important trigonometric ratio that captures interesting information
about an angle θ in a right triangle. It is written tan θ and is defined as the ratio between the
length of the side opposite the angle and the length of the side adjacent to it.

Figure 60: Right Triangle with Angles A and B

Given this definition and the angles in Figure 60, we can derive the following information. Note
that in addition to being the ratio of opposite to adjacent sides, the tan θ is also the ratio of
sin θ to cos θ.

tanA =
opp

adj
=
a

b
=

a
c
b
c

=
sinA

cosA

tanB =
opp

adj
=
b

a
=

b
c
a
c

=
sinB

cosB

3.13 Using a Right Triangle to Solve Trigonometric Problems

We have talked in earlier sections about sin, cos, and tan in the context of the unit circle, but
their definitions do not depend on having a hypotenuse of unit length. Any right triangle will
do. The values of sin and cos range from −1 to 1, so any value in that range is a legal value for
the sin or cos of some angle θ. The value of the tan function can be any real number, so any
value is legal to be the tan of some angle θ.

If a problem tells you the value of the sin, cos, or tan of an angle θ and that value does
not correspond to one of the familiar “key angles” from the unit circle, then draw a right trian-
gle and label the sides with the information you know. Using the Pythagorean Theorem, you
can then figure out the remaining side, and then subsequently you can read off the values of
the other trigonometric functions you may need to calculate.

3.13.1 Using Right Triangle with an Acute Angle

For example, a typical problem of this kind might take this form:
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• Given cosx = 3
4 and that x is acute

(
0 < x < π

2

)
, find sin 2x

We know that x is an angle whose cosine is 3
4 . This value does not look like any of the small set

of values (0, 1, 1
2 ,
√
2
2 , and

√
3
2 ) for the key angles of the unit circle, so we cannot immediately

know the measure of the angle x in radians. Using the triangle technique here, we’ll see that
to solve this particular problem we don’t really even need to find the value of x to get the final
answer we’re being asked to calculate.

Since the angle x is not one of the key angles, we draw a triangle with the information we
know. As shown in Figure 61, we place the angle x in one corner. Then, since the cosx = 3

4 we

know from the definition of cosine

(
adjacent

hypotenuse

)
that 3 can be the length of the adjacent side

while 4 is the hypotenuse. This is by definition what it means that cosx = 3
4 .

Figure 61: Using Right Triangle and Pythagorean Theorem for Trig Problems

Recall from Section 3.11, “Double Angle Identities”, that the sin 2x we’ve been asked to find
can be rewritten via an identity as:

sin 2x = 2 cosx sinx

We already know the value of cosx since the problem statement gave that to us. To complete
the problem we need to determine the value of sinx. From the definition of the sine function,
its value is the ratio of the opposite side to the hypotenuse. The problem didn’t provide us
the length of the opposite side, but now that we’ve drawn a right triangle, we can use the
Pythagorean Theorem to figure it out. As shown in the figure, the value of the opposite side is√

42 − 32 =
√

16− 9 =
√

7. So, the ratio of the opposite side to the hypotenuse that provides

the value of sinx =

√
7

4
. Finally, to calculate the value of sin 2x we just need to substitute the

values we now know for both cosx and sinx into the above double-angle formula:

sin 2x = 2 cosx sinx

= 2 · 3

4
·
√

7

4
= 2

3
√

7

16
=

3
√

7

8

3.13.2 Using Right Triangle with an Obtuse Angle

Another typical problem will involve an obtuse angle. Consider this question:

• Given sinx = 2
3 and that x is obtuse

(
π
2 < x < π

)
, find cosx and cos 2x

As shown in Figure 62, we setup our triangle with the obtuse angle x, putting the 2 for the
opposite side and 3 for the hypotenuse since the definition of the sin function is the ratio of the
opposite side to the hypotenuse.
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Figure 62: Using Right Triangle and Pythagorean Theorem for Obtuse Angle Problem

Using the Pythagorean Theorem, we determine that the adjacent side is
√

5, so the cosx should

be the ratio of the adjacent side to the hypotenuse

√
5

3
. However, given that this obtuse angle

x is in the second quadrant, recall from Section 3.9, “Remembering the Exact Values of Key
Angles on Unit Circle” that the value of its cosine should be a negative number. So the correct

answer is cosx = −
√

5

3
.

To find the value of cos 2x, we can use any of the identities from Section 3.11, “Double Angle
Identities” and then fill in the values of the sinx and cosx that we already have. The three

equations below show how all three identities allow us to conclude that cos 2x =
1

9
:

cos 2x = 1− 2 sin2 x = 1− 2 ·
(

2

3

)2

= 1− 2 · 4

9
= 1− 8

9
=

1

9

= 2 cos2 x− 1 = 2

(
−
√

5

3

)2

− 1 = 2 · 5

9
− 1 =

10

9
− 1 =

1

9

= cos2 x− sin2 x =

(
−
√

5

3

)2

−
(

2

3

)2

=
5

9
− 4

9
=

1

9

3.14 Using Inverse Trigonometric Functions on Your Calculator

Suppose a problem tells you, or as part of your work you conclude, that sinx = 0.156. Since
the value is not one of the “key angles” from the unit circle, you need to use the inverse sine
function (sin−1) on your calculator to solve for x. Since the functions are periodic, however,
there are infinitely many angles x that would have a sin value of 0.156. For this reason, the
range of the sin−1 function is restricted to the interval

[
−π

2 ,
π
2

]
so that there is an unambiguous

answer when you type it into your calculator. This interval represents quadrants I and IV .
Depending on the problem you are solving, you may have to add some integer multiple of 2π
to the answer your calculator gives you.

Similar inverse functions exist for cosine and tangent, and are written cos−1 and tan−1. For
similar reasons as noted above for the inverse sine function, the range of the cos−1 is restricted
to the interval [0, π]. This interval represents quadrants I and II. Depending on the problem
you are solving, you may have to add some integer multiple of 2π to the answer your calculator
gives you.

The tan−1 function’s domain accepts any real number, but its range is like sin’s
(
−π

2 ,
π
2

)
but

omitting the endpoints. Depending on the problem you are solving, you may have to add some
integer multiple of π to the answer your calculator gives you.
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3.15 Circular Functions sin, cos, and tan

We’ve seen the trigonometric functions sin, cos, and tan in earlier sections. In addition to being
related to right-triangles, since the functions also relate to the unit circle they are sometimes
know synonymously as circular functions. In this section we’ll study the graphs of the circular
functions sin, cos, and tan. These are periodic functions whose values repeat after a given
period. The value of the sin and cos functions cycle back and forth between a minimum value
and a maximum value, whereas the value of tan is unbounded. The amplitude of a periodic
function is one half of the difference between its maximum value and its minimum value. For
each graph we’ll list the domain, range, amplitude, period, minimum, maximum, and zeros.

3.15.1 The Graph of sinx

Figure 63 shows a portion of the graph of the sinx function. The domain of the function is
all real numbers (R), and its range is {x ∈ R | −1 ≤ x ≤ 1}. It cycles smoothly between its
maximum value at 1 and its minimum value at −1 over a period of 2π. That is, every positive
and negative multiple of 2π the graph repeats itself. Its maximum value occurs at x = π

2 , where
it equals one, and its minimum value occurs at x = 3π

2 , where its value is −1. These minima
and maxima recur at every integer multiple of 2π of these values as well. Its amplitude is one

half of the difference between the maximum and minimum, so that is
1

2
(1− (−1)) =

1

2
· 2 = 1.

The zeros of the graph occur at x = 0, x = π, and at x = 2π as well as at every positive and
negative multiple of 2π of those. We can express this by saying that the zeros are at x = 2πk
and x = π+2πk for k ∈ Z. Since in general a periodic function like sin will have infinitely-many
zeros, most problems involving a sin function will limit the domain to an interval like [0, 2π] to
focus your attention on a small, finite set of zeros.

Figure 63: Portion of the Graph of sinx

3.15.2 The Graph of cosx

Figure 63 shows a portion of the graph of the cosx function. The domain of the function is
all real numbers (R), and its range is {x ∈ R | −1 ≤ x ≤ 1}. It cycles smoothly between its
maximum value at 1 and its minimum value at −1 over a period of 2π. That is, every positive
and negative multiple of 2π the graph repeats itself. Its maximum value occurs at x = 0, where
it equals one, and its minimum value occurs at x = π, where its value is −1. These minima
and maxima recur at every integer multiple of 2π of these values as well. Its amplitude is one

half of the difference between the maximum and minimum, so that is
1

2
(1− (−1)) =

1

2
· 2 = 1.

The zeros of the graph occur at x = π
2 and x = 3π

2 , as well as at every positive and negative
multiple of 2π of those. We can express this by saying that the zeros are at x = π

2 + 2πk and
x = 3π

2 + 2πk for k ∈ Z. Since in general a periodic function like cos will have infinitely-many
zeros, most problems involving a cos function will limit the domain to an interval like [0, 2π] to
focus your attention on a small, finite set of zeros.
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Figure 64: Portion of the Graph of cosx

3.15.3 The Graph of tanx

Figure 63 shows a portion of the graph of the tanx function. The domain of the function is
all real numbers except integer multiples of π

2 , where it has vertical asymptotes. Its range is
all real numbers (R). It cycles between −∞ and ∞ repeating every π, so its period is π. As it
has no minimum or maximum value, it does not make sense to talk about the amplitude. The
zeros of the graph occur at x = 0 as well as at every positive and negative multiple of π. We
can express this by saying that the zeros are at x = πk for k ∈ Z. Since in general a periodic
function like tan will have infinitely-many zeros, most problems involving a tan function will
limit the domain to an interval like

(
−π

2 ,
π
2

)
to focus your attention on a small, finite set of

zeros.

Figure 65: Portion of the Graph of tanx

3.15.4 Transformations of Circular Functions

As described more generally in Section 2.15, “Transformations of Graphs”, the graphs of sin, cos,
and tan can be transformed in all the same ways. In its most general form, the graph f(x) of a
transformed sine function can be written with four coefficients that control the transformations
of the original sinx graph:

f(x) = a sin(b(x− c)) + d
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From Section 2.15, “Transformations of Graphs”, you recognize that:

• a is a vertical stretch: it changes the amplitude from 1 to a

• b is a horizontal stretch: it changes the period from 2π to
2π

b
• c is a horizontal translation: it shifts the graph c units to the right

• d is a vertical translation: it shifts the graph d units up

Of course if a < 0 then you can think of that as a reflection in the x-axis, followed by a vertical
stretch of |a|. Similarly, if b < 0, then you can think of that as a reflection in the y-axis, followed
by a horizontal stretch of |b|.

Notice that when written in this form, any coefficient in front of the x inside the sin func-
tion is factored out so that what is left inside the parenthesis has the x with a coefficient of 1.
For example, given a function like 6 sin (3x− 2), we cannot immediately “read off” the horizon-
tal translation. We must first factor out the coefficient in front of x to get: 6 sin

(
3
(
x− 2

3

))
.

Only when the x has a coefficient of 1 in front of it can we read off the horizontal translation.
In this example, it is a shift to the right by 2

3 (and not by 2!).

3.15.5 Using Transformation to Highlight Additional Identities

Figure 66 shows the graphs of both sinx and cosx. You can see that the graphs’ shapes are
identical, but that they are “out of phase” by π

2 . It is visually clear that if we...

1. Shift cosx to the right by π
2 , we get sinx.

2. Shift cosx to the left by π
2 and reflect in the x-axis, we also get sinx.

3. Shift the graph of sinx to the left by π
2 we get cosx.

4. Shift sinx to the right by π
2 and reflect in the x-axis, we also get cosx.

Figure 66: Portion of the Graphs of sinx and cosx

These observations above explain the four handy identities below (for x in radians):

1. cos
(
x− π

2

)
= sinx

2. −cos
(
x+

π

2

)
= sinx

3. sin
(
x+

π

2

)
= cosx

4. −sin
(
x− π

2

)
= cosx
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3.15.6 Determining Period from Minimum and Maximum

Sometimes a problem will tell you the minimum and maximum points on a sin or cos curve and
ask you to find the period. We know that on both of these functions in one complete cycle, the
minimum occurs only once and the maximum occurs only once. In the simplest version of the
sin function with period 2π, the maximum occurs at π

2 and the minimum occurs at 3π
2 . This is

1
4 the way around the circle and 3

4 the way around the circle, respectively. Said another way,
if you go from the minimum to the maximum you have gone 3

4 −
1
4 = 1

2 of the way around, or
half of the period.

Therefore, if a problem tells you the minimum and the maximum points, subtract their x-co-
ordinates and that distance will be one half of the period. Double that value to get the period.
To find out the value of the constant b that’s needed to produce a transformed sin function that
has the computed period value, use the equation:

2π

b
= period

So, for example, if the minimum occurs at point (-2,0) and the maximum occurs at point (16,4),
then the distance between their x-coordinates is 16− (−2) = 18 and that represents half of the
period. The period is therefore 2 × 18 = 36, and the value of b that is needed in the general
a sin (b (x− c)) + d form of the circular function would be:

2π

b
= 36

2π

36
= b

b =
π

18

3.16 Applications of the sin Function: Tide Example

During high tide, the water depth in a harbor is 22 m, and during low tide it is 10 m. Assuming
a 12 h cycle:

• Find an expression for water depth t hours after low tide

• draw a graph of the function for a 48 h period

• State the times at which the water level is at a maximum, a minimum, and a mean sea
level.

We need to find the appropriate values of a, b, c, and d to “adjust” the general form of the sin
function (a sin(b(x − c)) + d) to fit our data. We start by noting that the period is 12 hours.

This means that we need
2π

b
= 12. Solving this simple equation gives b =

π

6
.

Next, we determine the amplitude of the function. This is one half of the difference between

the maximum water depth of 22 m and the minimum water depth of 10 m: a =
1

2
(22− 10) =

1

2
(12) = 6. After determining the period and the amplitude, we have a graph that looks like

what you see in Figure 67. We can see that the period is correct because the graph completes
one cycle exactly after twelve hours. We can see that the amplitude is right because it goes up
to 6 and down to −6.
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Figure 67: Initial sin Graph with Period and Amplitude Correct

The last steps are translating the graph horizontally and vertically to finish the job. Currently
the graph has a maximum of 6, but in our problem statement the maximum is 22 m, so the
value of d that we need to shift the graph up vertically is d = 22 − 6 = 16. After doing the
vertical translation, we have the graph in Figure 68.

Figure 68: Initial sin Graph Attempt After Vertical Translation

Finally, the problem asks that the graph start at time t = 0 at the minimum value. At the
moment the minimum value occurs after nine hours, so we need to shift the graph 9 units to
the left to translate that point to be on the y-axis where t = 0. This means that our value for
c = −9. This gives a final function of 6 sin

(
π
6 (x+ 9)

)
+ 16, whose graph appears in Figure 69.

Figure 69: Final Tidal Graph Involving sin Graphed on Interval [0, 48] Hours
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So, the expression for the water depth t hours after low tide is 6 sin
(
π
6 (t+ 9)

)
+ 16. The graph

of the tide depth over 48 hours appears in Figure 69. By also graphing the line y = 16, which
is the horizontal “mid-line” halfway between the maximum and minimum values, and using the
calculator to analyze the graph to find intersections, we can find all the points the problem asks
for:

• The minimum tide depths occur at hours 0, 12, 24, 36, 48

• The maximum tide depths occur at hours 6, 18, 30, 42

• The mean tide depths occur at hours 3, 9, 15, 21, 27, 33, 39, 45

3.17 Applications of the cos Function: Ferris Wheel Example

A ferris wheel of diameter 122 m rotates clockwise at constant speed. The wheel completes 2.4
rotations every hour. The bottom of the wheel is 13 m above the ground. A seat starts at
the bottom of the wheel. The height above the ground of the seat after t minutes is h(t) =
74 + a cos (bt).

• Find the maximum height above the ground of the seat

• Show the period is 25 minutes

• Find the exact value of a and b

• Sketch the graph of h for 0 < t < 50

At the lowest point on the bottom of the circle, we know the seat is 13 m above the ground. At
the highest point, it will be an entire diameter higher than that, which is 122 m higher. So the
maximum height above ground of the seat is 13 + 122 = 135 m.

We’re told that in 60 minutes, the seat does 2.4 rotations. By dividing 60 by 2.4, we can
find how many minutes it takes to perform a single rotation. 60

2.4 = 25, so a single rotation takes
25 minutes.

To find the value of b, we use the equation 2π
b = 25. Solving for b gives b =

2π

25
.

To find the value of a, we find the difference between the maximum and minimum value of
h, and then divide by two since the amplitude is the height above the horizontal midline of
symmetry of the cos function. To compute this, we calculate 135−13

2 = 122
2 = 61.

If we use these values of a = 61 and b = 2π
25 in the equation for h(t), then we get a graph

like Figure 70. However, immediately we notice something is not right. The problem says that
“A seat starts at the bottom of the wheel,” which means that the height of the seat at time
zero h(0) should equal 13. However, from the graph we see that h(t) = 135 and that it does
take on the value of 135 until h(12.5). So, things are backwards. We need the graph to start
out “low” instead of starting “high” where it is now.
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Figure 70: Initial Attempt at Graph of Ferris Wheel Seat Height

In order to correct this mistake, we simply need to reflect the graph vertically, reflecting it
around its horizontal midline of symmetry. Recall from Section 2.15.2, “Vertical Reflection”
that the way to reflect a graph vertically is to multiply the function cos by −1. This means that
instead of using a = 61 we need to instead us a = (−1) · 61 = −61. This keeps the amplitude
of the cos graph at the required value of 61, but flip-flops the graph so what was “up” becomes
”down” instead. Figure 71 shows the graph of the resulting h(t) = 74 − 61 cos(2π25 t) function
using this new, correct value for a, and restricts the graph as requested only to the values of
t between 0 and 50 minutes. Note that the calculator requires the function variable to be x
instead of allow us to use t, but the result is the same. Notice that now, as demanded by the
problem statement, the height of the ferris wheel seat at time zero h(0) equals 13 as it should,
and one half of the way through the period of 25 minutes, the height at time 12.5 minutes
h(12.5) = 135 which occurs when the seat is at its maximum height. So, the moral of the story
is that sometimes after determining the amplitude, it might be necessary to use the negative
value of that amplitude as the multiplier in front of the original function if the problem requires
the graph to be flipped vertically. Therefore, a = −61 .

Figure 71: Correct Ferris Wheel Graph with Vertically Reflection

NOTE: Remember from Section 2.14.2, “Restricting the Domain of a Graph” that when
entering a function to graph on the TI-NSpire, it’s possible to type the vertical bar “such
that” symbol and provide a range of values that constrains the function domain. In this
example, I typed the function in as f1(x) = 74− 61 cos

(
2π
25x
)
| 0 ≤ x ≤ 50
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3.18 Solving Trigonometric Equations in a Finite Interval

When you are given an equation involving a trigonometric function that does not involve any
squared functions (e.g. sin2 x, cos2 x, or tan2 x), then you can isolate the trig function on one
side of the equation and then use your calculator to take the appropriate inverse function of
both sides to solve the equation. The problem will always provide an interval in which to seek
the solution so that the number of answers is a small, finite number.

3.19 Solving Quadratic Equations in sin, cos, and tan

When you are given an equation involving squared trigonometric functions like sin2 x, cos2 x,
or tan2 x, then to solve them, follow these steps:

1. If the equation involves different trigonometric functions (e.g. both sinx and cosx), then
use an appropriate identity to rewrite the equation to use only a single trigonometric
function (e.g. sin2 x+ cos2 x = 1).

2. Substitute a variable u for the trigonometric function to end up with a simple quadratic
equation in u2 and u.

3. Use the quadratic equation or factoring to find the two solutions for u

4. Replace u by its trigonometric function again and solve the equations using the unit circle
or inverse trig functions

Consider the example equation 6 cos2 x+ 7 sinx = 8.

Since it involves both cosine and sine functions, use an identity to replace the cos2 x so that
the equation ends up using only sinx. The most common identity for this purpose is one de-
scribed in Section 3.10, “The Pythagorean Identity”. Since we know from this identity that
sin2 x+ cos2 x = 1, rearranging this equation we get cos2 x = 1− sin2 x. Substituting the right
hand side of this identity equation into the original problem, we get:

6 cos2 x+ 7 sinx = 8

6
(
1− sin2 x

)
+ 7 sinx− 8 = 0

6− 6 sin2 x+ 7 sinx− 8 = 0

−6 sin2 x+ 7 sinx− 2 = 0

6 sin2 x− 7 sinx+ 2 = 0

Next substitute u = sinx to get a simpler-looking quadratic equation to solve: 6u2−7u+2 = 0.
Using the quadratic equation with a = 6, b = −7, and c = 2, we solve for u:

u =
−(−7)±

√
(−7)2 − 4 · 6 · 2
2 · 6

=
7±
√

49− 48

12
=

7± 1

12
=

8

12
or

6

12
=

2

3
or

1

2

Now, substitute back the original expression for u so that we have:

u =
2

3
or u =

1

2

sinx =
2

3
or sinx =

1

2

sin−1 (sinx) = sin−1
2

3
or sin−1 (sinx) = sin−1

1

2

x = 0.72973 or x =
π

6
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Notice that one of the values of sinx was easily recognizable from the “key angles” of the unit

circle, so in that case we provide the exact answer for x of
π

6
. In the other case, we needed to

use the calculator to compute the inverse sine of 2
3 . To three significant figures, x ∈

{
0.730, π6

}
.

Before giving the final answer, we need to look again at the interval stipulated by the orig-
inal problem. They ask us to find the solutions over the interval [0, 4π]. Given this, we need to
expand the solution set to include any multiples of 2π that would still fall inside this interval.
As a decimal, 4π is approximately 12.57 and 2π is approximately 6.28. So, for the decimal
solution x = 0.730 we can add 6.28 once and still be inside the 12.57 upper bound. This gives

us one additional decimal solution of 0.730 + 6.28 = 7.01. Adding 2π to
π

6
we can get another

additional solution of
13π

6
that is still inside the upper bound. Therefore, the final solution to

the problem is: x ∈
{

0.730, 7.01,
π

6
,
13π

6

}
.

3.20 Solutions of Right Triangles

In addition to the Pythagorean Theorem, trigonometric functions give you a new way to solve for
missing lengths in a right triangle when you know the measure of one of the angles. Figure 72
shows two different kinds of angles that can occur in problems like this, so-called angles of
depression and elevation. For a particular problem, in practice, the angles are the same. One
man’s angle of depression is another man’s angle of elevation as shown in the figure.

Figure 72: Angles of Depression and Elevation are Equal

Consider the example showing in Figure 73, where a man stands 100 m away from the front
door of the Chrysler Building, and measures an angle of elevation to the top of the building’s
spire of 73°. How tall is the building?

Figure 73: Using the tan Function to Calculate a Building’s Height
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If we call the unknown height of the building x, then we can use the tangent function to represent
an equation that relates the angle of elevation to the ratio of the opposite over adjacent sides
of the right triangle formed by the little man, the front door of the building, and the top of the
spire:

tan 73° =
opposite

adjacent
=

x

100

Normally the tan function expects an angle measure in radians as its argument. On your
calculator, you can enter the degree symbol after the 73 and it will automatically convert the
degrees to radians and then compute the tangent. Be careful to add the degree symbol, or else
the calculator will compute the tangent of 73 radians! The calculator gives 3.27 as the value of
the tan 73°, so we have:

tan 73° = 3.27 =
x

100
100 · 3.27 = x

x = 327

So, the building is 327 m tall.

3.21 The Cosine Rule

The Cosine Rule is a more generalized form of the Pythagorean Theorem. While the latter only
is applicable to right triangles, this rule works for any triangle. The Cosine Rule is useful when
you are given the lengths of two sides and the angle between them. It allows you to solve for
the length of the missing side.

a2 = b2 + c2 − 2bc cosA

b2 = a2 + c2 − 2ac cosB

c2 = a2 + b2 − 2ab cosC

3.22 The Sine Rule

The Sine Rule says that in any triangle, the ratio of the length of a side to the sin of the angle
opposite that side stays the same. This rule is useful when you know any angle in a triangle as
well as the length of the side opposite. Then, depending on whether you know another angle or
another side, you can use the Sine Rule to compute the missing quantity.

a

sinA
=

b

sinB
=

c

sinC

Consider the triangle in Figure 74. Suppose you are given the length of sides a and b, as well
as angle A, and are asked to find angle B that you are told (and can see) is obtuse.

Figure 74: Sine Rule Always Finds the Acute Angle
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Using the Sine Rule, you will therefore solve this equation for B:

a

sinA
=

b

sinB

sinB =
b · sinA

a

sin−1 (sinB) = sin−1
(
b · sinA

a

)
B = sin−1

(
b · sinA

a

)
Since the range of the sin−1 function is from −π

2 to π
2 , the value that you compute for B will

be an acute angle. You can see in the figure above that the dotted line with the same length
as side a can also form another triangle with side length b and angle A that has an acute angle
labeled Bacute. That is the angle whose measure you find using the computation above. In the
isosceles triangle with equals side-lengths a, we know that the two base angles are equal. So the
value of the obtuse angle you are looking for Bobtuse is the complement of Bacute, which means
that Bobtuse = π −Bacute (or 180° −Bacute if in degrees).

3.23 Area of a Triangle

If you know the length of two sides of a triangle, and the angle between them, then you can
compute the area of the triangle with the formula:

Area =
1

2
ab sinC
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4 Vectors

4.1 Vectors as Displacements in the Plane

A vector represents the shortest path in (two-dimensional) space starting at some initial point
A and terminating at another point B. Unlike a segment, a vector is represented as an arrow,
whose length indicates the distance required to move in a straight line from A to B, and whose
arrow head indicates the direction of the movement. Two vectors are equal if they have the same
magnitude and the same direction, irrespective of their initial point. As shown in Figure 75,
the vector #»v indicates the directed straight path from A to B, but it is the same vector if it
is translated to have its initial point coincide with the origin of the Cartesian plane. In either
position, the vector #»v points in the same direction and has the same length (also known as
magnitude).

Figure 75: Vectors Represent Distance and Direction, Irrespective of Origin Point

We typically distinguish the name of a vector from other kinds of variable names with an arrow
written above and a bolder type. If the initial and terminal points of a vector are labeled with
letters like A and B, then an equivalent way of naming the vector uses these point labels listed
in the order the arrow is pointing. So, for example, Figure 75 vector #»v can also be written

#     »

AB.

4.2 Vectors as Displacements in Three Dimensions

A vector has exactly the same meaning in three dimensions as it does in the plane. It represents
the shortest path through space starting at some initial point A and terminating at another
point B. Figure 76 shows such a vector with initial point along the x-axis and terminating at
a point above the y-axis in the yz-plane. As was the case in two dimensions, we can always
translate a vector so that its initial point is the origin of the x-, y-, and z-axes without changing
the vector. In other words, both vectors labeled #»v in Figure 76 are the same vector: same
magnitude or length, same direction.

Figure 76: Vectors Also Represent Distance and Direction in 3 Dimensions

4.3 Terminology: Tip and Tail

Since vectors are drawn as arrows, the terminal point with the arrowhead is sometimes called
the tip of the vector, while the initial point is called the tail. When one vector starts at exactly
the place where another vector terminates, we say that they are placed “tip to tail”.
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4.4 Representation of Vectors

Since vectors having the same length and direction are equivalent, we always describe a vector
as if its initial point were at the origin. By doing this, we can use the (x, y) coordinates of its
terminal point to describe it. Figure 77 shows two vectors #»v and #»w. The x-and y-coordinates
of the point (4, 3) for vector #»v correspond to the fact that to get from the initial point at the
origin to that terminal point, you need to “walk” 4 units to the right and 3 units up. Similarly,
for #»w, its terminal point (−2, 2) means that to travel from the origin to there, you need to go 2
units left, and 2 units up. Even though the length of the vector is measured along the straight
path from the initial point to the terminal point, the vector with initial point at the origin is
uniquely identified by these x and y coordinates that represent the distance of the legs of a right
triangle having the vector as the hypotenuse.

Figure 77: Coordinates of Terminal Point Uniquely Identify a Vector

To make it clear we are talking about a vector instead of just a point in the plane, we not only
write the vector variable with the bold font and arrow above, we also write the coordinates of
the vector’s terminal point in a column like this:

#»v =

4

3


#»w =

−2

2



In general, a vector in the plane is written in a column with its x-coordinate at the top, and
y-coordinate at the bottom. A vector in three dimensions extends this to list the z-coordinate
at the bottom, like this:

#»a =

4

3

 =

x

y

 Two-dimensional vector

#»

b =


−2

2

1

 =


x

y

z

 Three-dimensional vector

4.5 Magnitude of a Vector

Given a vector #»v , its length (known as magnitude) is written | #»v |. As shown in Figure 78, we
calculate the magnitude using the Pythagorean Theorem with the x-and y-coordinates as the
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legs of the right triangle for which the vector is the hypotenuse. This gives:

| #»v | =
√

42 + 32 =
√

25 = = 5

Therefore, in general we have: ∣∣∣∣∣∣∣
a
b


∣∣∣∣∣∣∣ =

√
a2 + b2

Figure 78: Using the Pythagorean Theorem to Find (2D) Vector Magnitude

As shown in Figure 79, for a three-dimensional vector we also calculate the magnitude using
the Pythagorean Theorem. First we use the theorem to find the length of the diagonal in the
xy-plane, which is

√
(−4)2 + (−2)2. Then we use the theorem again with the right triangle

having this first diagonal as one leg and the segment parallel to the z-axis as the other leg. This
gives:

| #»v | =
√(√

(−4)2 + (−2)2
)2

+ 32

=
√

(−4)2 + (−2)2 + 32 =
√

16 + 4 + 9 =
√

29

Therefore, in general we have: ∣∣∣∣∣∣∣∣∣∣∣


a

b

c



∣∣∣∣∣∣∣∣∣∣∣
=
√
a2 + b2 + c2

Figure 79: Using the Pythagorean Theorem to Find (3D) Vector Magnitude
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4.6 Multiplication of a Vector by a Scalar

To multiply a vector by a scalar k, simply multiply each coordinate by k:

k


a

b

c

 =


ka

kb

kc


As shown in Figure 80, when you multiply a vector by a scalar number like 2, you stretch it 2
times in the same direction it’s already pointing. A consequence is that the magnitude of the
new vector is 2 times the magnitude of the original vector.

|k #»a | = k | #»a |

Figure 80: Multiplying a Vector by a Scalar Stretches It By That Factor

4.7 Negating a Vector

Given a vector #»a , you can negate the vector by putting a minus sign in front of it: − #»a . Just
as with simple numbers, putting a minus sign in front is the same as multiplying the vector by

the scalar −1. So if #»a =

a
b

, we have:

− #»a = −

a
b

 = −1

a
b

 =

−a
−b


Note that the magnitude is not changed by this operation:

|− #»a | = | #»a |

Figure 81 shows the visual interpretation of what negating a vector does. It flips the vector
around so that it’s pointing in the opposite direction, without changing its length. As with any
vector, we can then translate the negated vector so that its initial point is at the origin without
changing it.
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Figure 81: Negating a Vector Makes It Point in the Opposite Direction

4.8 Sum of Vectors

To add vectors, simply add their coordinates:a
b

+

d
e

 =

a+ d

b+ e



Figure 82 shows the visual interpretation of adding vectors #»a =

4

3

 and
#»

b =

1

5

 together.

Since we can move vector
#»

b ’s initial point around without changing it, we move it to coincide
with the terminal point of #»a as shown in the figure. The vector #»a +

#»

b is the result of first
traveling in the direction of #»a for the distance | #»a |, then traveling in the direction of

#»

b for the

distance
∣∣∣ #»

b
∣∣∣. This is exactly the same destination you would get to by starting at the origin

and traveling the distance of the diagonal of the parallelogram formed by the two vectors. For
this reason vector addition is sometimes called the “parallelogram rule”.

Figure 82: Adding Vectors Produces Their Parallelogram Diagonal

4.9 Difference of Vectors

To subtract vectors, simply subtract their coordinates in the correct order:a
b

−
d
e

 =

a− d
b− e



86



Figure 83 shows the visual interpretation of #»a − #»

b . Recall that #»a − #»

b = #»a + (− #»

b ), so we
can start by negating

#»

b to flip its direction around, translate the resulting − #»

b to start at the
origin, and then finally use the “parallelogram rule” above for adding vectors #»a and − #»

b . If we
translate the resulting vector #»a − #»

b to start at the terminal point of
#»

b , then we can say that
#»a − #»

b is the vector that connects the tip of
#»

b to the tip of #»a .

Figure 83: Vector a− b Connects Tip of b to Tip of a

Just as subtraction of numbers is not commutative (e.g. 5 − 3 6= 3 − 5), the same is true of
vector subtraction. Figure 84 shows the visual interpretation of

#»

b − #»a . As we did above, we
start by negating #»a and translating its initial point to the origin. Then, we add the vector

#»

b
with this − #»a using the parallelogram rule. If we translate the resulting vector

#»

b − #»a to start
at the terminal point of #»a , then we can say that

#»

b − #»a is the vector that connects the tip of
#»a to the tip of

#»

b . If you compare the result to Figure 83, you’ll see that it’s the same vector
but with the opposite direction. In other words, we have:

#»a − #»

b = −(
#»

b − #»a)

Figure 84: Vector b− a Connects Tip of a to Tip of b
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4.10 Unit Vectors

A unit vector is one whose length is equal to one unit. For example, the following three vectors
all are unit vectors because their length is one:∣∣∣∣∣∣∣

1

0


∣∣∣∣∣∣∣ =

√
12 + 02 =

√
1 = 1

∣∣∣∣∣∣∣
0

1


∣∣∣∣∣∣∣ =

√
12 + 02 =

√
1 = 1

∣∣∣∣∣∣∣∣∣∣∣


4

5

3

5



∣∣∣∣∣∣∣∣∣∣∣
=

√
4

5

2

+
3

5

2

=

√
42 + 32

52
=

√
16 + 9

25
=

√
25

25
=
√

1 = 1

4.11 Scaling Any Vector to Produce a Parallel Unit Vector

You can make any vector #»v into a unit vector by following these two steps:

• If | #»v |=1, then you’re done. It’s already a unit vector

• Otherwise, multiply #»v by the reciprocal of | #»v |. This will scale #»v to stretch or shrink it
to have exactly the length 1 without changing its direction.

For example, consider the vector

4

5

. We start by computing:

∣∣∣∣∣∣∣
4

5


∣∣∣∣∣∣∣ =

√
42 + 52 =

√
16 + 25 =

√
41

So the vector’s length is not equal to 1, therefore it is not a unit vector. To turn it into a unit
vector, multiply it by the reciprocal of its magnitude:

1√
41

4

5

 =



4√
41

5√
41


This vector should be a unit vector now. We can verify it by computing its magnitude:∣∣∣∣∣∣∣∣∣∣∣∣



4√
41

5√
41



∣∣∣∣∣∣∣∣∣∣∣∣
=

√(
4√
41

)2

+

(
5√
41

)2

=

√
42 + 52

41
=

√
41

41
=
√

1 = 1
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4.12 Position Vectors

Given a point A,the position vector of A (typically written #»a) is the vector with initial point at
the origin and terminal point at A. Given another point B, it also has an associated position
vector

#»

b that points from the origin to B. As shown in Figure 85, the vector
#     »

AB is therefore
#»

b − #»a .

Figure 85: Vector AB Connects Tip of Position Vector a to Tip of Position Vector b

4.13 Determining Whether Vectors are Parallel

Two vectors #»a and
#»

b are parallel if one is a scalar multiple of the other. Recall that you can
change the initial point of #»a and

#»

b by translating them to the origin (without changing either
one’s direction!). They are parallel, then, if #»a = k

#»

b for some scalar k. In a visual sense, it
means that #»a and

#»

b are pointing in the same direction and you can stretch (or shrink) #»a by
some amount to get

#»

b .

Given two vectors #»a =


a1

a2

a3

 and
#»

b =


b1

b2

b3

, to determine if they are parallel compute

the three quotients:
b1
a1

,
b2
a2

, and
b3
a3

.

If any two of these quotients are not equal, then you can conclude that #»a and
#»

b are NOT
parallel. If all three of the quotients are equal, then that value is the scalar multiple k by which
#»a was multiplied to get

#»

b .

For example, consider the vectors #»a =


7

−3

5

 and
#»

b =


−91

39

−65

. Computing the three quotients

we get:

−91

7
= −13

39

−3
= −13

−65

5
= −13

Since all three quotients equal −13, then we know that
#»

b = −13 #»a and this tells us that they
are parallel, since one is a scalar multiple of the other.
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4.14 Finding Parallel Vector with Certain Fixed Length

Given a vector #»v of a given length | #»v |, you may be asked to find a parallel vector #»w with a
specific different length L. The procedure is similar to that described in Section 4.11, “Scaling
Any Vector to Produce a Parallel Unit Vector”, with one additional twist. Instead of scaling the

original vector by multiplying by
1

| #»v |
, scale it by that factor multiplied by the desired length L:

#»w =
L

| #»v |
#»v

4.15 Scalar (or “Dot”) Product of Two Vectors

The scalar product (also known as the dot product) of vectors #»a and
#»

b is written #»a · #»

b and is
defined as follows:

If #»a =

a1

a2

 and
#»

b =

b1
b2

 , then #»a · #»

b = a1b1 + a2b2

The scalar product is called that because the result is a scalar number, not a vector. It’s also
called the dot product because the operation is written with a dot between the two vectors.
If the vectors are in three dimensions, the scalar product also includes the product of their
z-coordinate values:

If #»a =


a1

a2

a3

 and
#»

b =


b1

b2

b3

 , then #»a · #»

b = a1b1 + a2b2 + a3b3

4.16 Perpendicular Vectors

Two vectors #»a and
#»

b are perpendicular if and only if their scalar product is zero:

#»a · #»

b = 0 ⇐⇒ #»a ⊥ #»

b

4.17 Base Vectors for Two Dimensions

In two dimensions, base vectors are a set of two perpendicular unit vectors. Any vector in
two dimensions can be expressed as the sum of appropriate scalar multiples of these two base

vectors. The canonical base vectors comprise the set


1

0

 ,

0

1


. This is the unit vector

from the origin pointing a distance of one unit along the x-axis and the unit vector from the
origin pointing a distance of one unit up the y-axis. By convention, the one pointing along the
x-axis is called

#»

i and the one pointing along the y-axis is called
#»

j . Figure 86 shows the point

(3, 4) in the plane, and its position vector. In column notation, this vector is written

3

4

.

However, if we multiply the
#»

i unit vector by the scalar value 3 to get 3
#»

i and we multiply the
#»

j unit vector by the scalar value 4 to get 4
#»

j , then we can use the parallelogram rule from
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Section 4.8, “Sum of Vectors” to add 3
#»

i + 4
#»

j to get the position vector for the point (3, 4).

When we write a vector

3

4

 in the form 3
#»

i + 4
#»

j , we say that it is in “base vector form”.

Figure 86: Any Vector Can Be Expressed as Sum of Scalar Multiples of Base Vectors

4.18 Base Vectors for Three Dimensions

In three dimensions, base vectors are a set of three perpendicular unit vectors. Any vector in
three dimensions can be expressed as the sum of appropriate scalar multiples of these three base

vectors. The canonical base vectors comprise the set




1

0

0

 ,


0

1

0

 ,


0

0

1




. This is the unit

vector from the origin pointing a distance of one unit along the x-axis, the unit vector from the
origin pointing a distance of one unit up the y-axis, and the unit vector from the origin pointing
a distance of one unit up the z-axis. By convention, these are called

#»

i ,
#»

j , and
#»

k respectively.
In an analogous way to what we illustrated in Section 4.17, “Base Vectors for Two Dimensions”,
in three dimensions any vector can be written in base vector form. For example:

3

17

−2

 = 3
#»

i + 17
#»

j − 2
#»

k

4.19 The Angle Between Two Vectors

Given the two vectors #»a and
#»

b in Figure 87, recall that the cosine of the angle θ between them
is:

cos θ =
#»a · #»

b

| #»a |
∣∣∣ #»

b
∣∣∣ therefore θ = cos−1

 #»a · #»

b

| #»a |
∣∣∣ #»

b
∣∣∣
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Figure 87: Angle θ Between a and b is cos−1
(

a · b
|a| |b|

)

If vectors #»a and
#»

b are perpendicular, then the angle between them is
π

2
. We know from the

unit circle “key angles” that the cos
π

2
= 0. This means that

#»a · #»
b

| #»a || #»b | = cos π2 = 0, so for that

to happen, it must be the case that #»a · #»

b = 0. This is the condition we learned about in
Section 4.16, “Perpendicular Vectors”.

4.20 Vector Equation of a Line in Two and Three Dimensions

A line is a straight, one-dimensional figure that we normally describe using the equation
y = mx + b in slope-intercept form, or y − y1 = m(x − x1) in point-slope form. In these
two ways to express the set of points (x, y) that belong to a straight line, the slope m is the
value that determines the “direction” the line is pointing, and the y-intercept (0, b) or arbitrary
point (x1, y1) defines a point that the line passes through. In both cases, once we’ve indicated
a direction for the line and one point that it passes through, we have uniquely defined the line.

Using these same concepts, we can use a vector equation as an alternative way to describe
a line. Figure 88 shows the technique we’ll adopt. Given a line L, we need the same two “in-
gredients” as in the two examples above: a direction vector

#»

d that indicates the direction the
line is pointing, and a position vector #»p for some point that the line passes through.

Figure 88: Vector Line r = p + kd Has Position Vector p and Direction Vector d

As shown in Figure 88, if we use the “parallelogram rule” to add #»p and
#»

d (after translating
it to the origin as well), we get a position vector for some other point on the line L. If we
repeat the process of adding #»p to another multiple of the direction vector like 3

#»

d , again we
get another position vector for different point on the line L. Trying a third time, if we add #»p
to yet another multiple of the direction vector like 5

#»

d , we get a third position vector for yet
another point on the line L. If instead of adding the position vector #»p only to a few different
scalar multiples of the direction vector

#»

d , we added to #»p every possible positive or negative
real number multiple k of the direction vector, then we could end up producing position vectors
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for every point on the line L.

Since the line L is made up of infinitely many position vectors, one that connects the ori-
gin to each point on the line, we can describe the set of these infinitely many position vectors
using the vector equation:

#»r = #»p + k
#»

d (k ∈ R)

In other words, the line L is the set of all vectors #»r that result by taking a position vector #»p
for some point on the line and adding to it every possible real number multiple of the direction
vector

#»

d that determines the line’s direction.

Keep in mind that any position vector on the line is fine to use for the position vector of
the vector line equation. If you happen to know more than one position vector on the line, just
pick one of them. It doesn’t matter which one you choose. Once you add all the scalar multiples
of the direction vector to it, you will still end up producing the same line L.

4.21 Vector Equation of Line Passing Through Two Points

Given two points, for example (5, 6) and (1, 3), to determine the vector equation of the line that
passes through both of them, do the following:

• Write the points in vector form and subtract one from the other to get the direction vector.

• Pick one of the two points (doesn’t matter which) to use as the position vector

So,

5

6

 −
1

3

 =

4

3

. This is the direction vector. Subtracting them in the other order

would give

−4

−3

 = −

4

3

, so it’s just pointing in the opposite direction. It still ends up

generating the same line when we consider adding all real number multiples of the direction
vector to the position vector.

For the position vector, pick either one. For example, we can use

5

6

. So, writing the

equation in vector line form we get:

#»r =

5

6

+ k

4

3

 (k ∈ R)
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4.22 Finding the Cartesian Equation from a Vector Line

If you’re given a line in vector line form #»r =

5

6

 + k

4

3

, you can easily convert it to

Cartesian form by following these steps:

• Write the vector #»r as

x
y


• Write the system of two equations involving x and k as well as involving y and k

• Choose one of the two equations and solve for k

• Substitute that value of k into the other equation to eliminate k and end up with a
Cartesian equation in only x and y.

In the example above, start by replacing #»r with

x
y

:

x
y

 =

5

6

+ k

4

3


So the system of equations is: 

x = 5 + 4k

y = 6 + 3k


Using the first equation to solve for k we get:

x = 5 + 4k

x− 5 = 4k

1

4
x− 5

4
= k

Substituting this value of k into the other equation in the system, we can eliminate k and end
up with a Cartesian equation for the line in only x and y:

y = 6 + 3k

y = 6 + 3

(
1

4
x− 5

4

)
y = 6 +

3

4
x− 15

4

y =
3

4
x+

24

4
− 15

4

y =
3

4
x+

9

4

4.23 The Angle Between Two Vector Lines

To compute the angle between two vector lines, find the angle between their respective direction
vectors using the formula in Section 4.19, “The Angle Between Two Vectors”.
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4.24 Distinguishing Between Coincident and Parallel Lines

Two vector lines are parallel if their respective direction vectors are parallel (equal or one is a
scalar multiple of the other). See Section 4.13, “Determining Whether Vectors are Parallel” for
tip on determining if two vectors are parallel.

Two vector lines are coincident if the specify the same line. This means that they must be
parallel, and you can find some point that exists on both lines.

4.25 Finding the Point of Intersection of Two Lines

To find the point of intersection of two vector lines, set the two vectors equal and solve the
resulting system of simultaneous equations. Make sure that the two different equations use two
distinct variables for the real number multiple of the direction vector. If the lines are in two
dimensions, then they will either be parallel or they will intersect. In three dimensions the lines
might be parallel, intersect, or be skew (no intersection but not parallel).

For example, given the two lines #»r1 =


4

7

2

 + t


5

0

−4

 and #»r2 =


1

3

−2

 + s


−1

2

4

 find the

point B where they intersect.

If the two lines intersect, then there will be some values for s and t that produce the same
position vector on both lines. So, we start by setting #»r1 = #»r2:

4

7

2

+ t


5

0

−4

 =


1

3

−2

+ s


−1

2

4


This implies the system of linear equations:

4 + 5t = 1− s
7 + 0t = 3 + 2s

2− 4t = −2 + 4s

Given that the second equation has 0× t, that one will only have variable s left.

7 + 0t = 3 + 2s

7 = 3 + 2s

2 = s

So s = 2. Substituting that back into one of the other two equations in the system (let’s pick
the first one), we get:

4 + 5t = 1− s
4 + 5t = 1− (2)

4 + 5t = −1

t = −1
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Now we check our work to ensure that using the values s = 2 and t = −1 produce the same
vector: 

4

7

2

+ (−1)


5

0

−4

 =


4− 5

7− 0

2− (−4)

 =


−1

7

6




1

3

−2

+ (2)


−1

2

4

 =


1− 2

3 + 4

−2 + 8

 =


−1

7

6


So, the point B where the two lines intersect is (−1, 7, 6).

NOTE: If the problem appears on a calculator test, remember from Section 1.25, “Solving
Systems of Three Linear Equations Using Technology” that you can enter the system of three
linear equations in three variables into the calculator and it will give you the answer in a
single step.

4.25.1 Finding Intersection Between a Line and an Axis

If you are given the equation of one vector line L1 and asked to find where it intersects an axis
like the x-axis, use a vector equation for the desired axis as your L2 and then solve the problem
as described in Section 4.25, “Finding the Point of Intersection of Two Lines”. Since the origin

0

0

0

 is a point on all three axes, it is the simplest vector to use for the position vector of the

axis line equations. Then you use the base vector (
#»

i ,
#»

j , or
#»

k ) from Section 4.18, “Base Vectors
for Three Dimensions” (or the two-dimensional versions if you are working in two dimensions).
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So, the vector equations for the three axes in three dimensions are:

• x-axis: r =


0

0

0

 + s


1

0

0



• y-axis: r =


0

0

0

 + s


0

1

0



• z-axis: r =


0

0

0

 + s


0

0

1


The analogous vector equations for the axes in two dimensions are:

• x-axis: r =

0

0

 + s

1

0



• y-axis: r =

0

0

 + s

0

1
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5 Statistics

5.1 Concepts

5.1.1 Population versus Sample

Statistics are drawn from an overall set called a population. When you draw a subset of examples
from the population, you are selecting a sample. Since it may be impractical (or impossible)
to measure statistics about an entire population, we use the statistics for a sample to estimate
population statistics. A random sample is a subset of the population that is chosen randomly,
to increase the chances that the sample statistics fairly represent the whole population.

5.1.2 Discrete Data versus Continuous Data

Discrete data is counted, while continuous data is measured.

Discrete data typically have natural number values and have a distinct set of possibilities you
can identify (and count) ahead of time. Examples include:

• dress sizes

• outcomes from rolling dice

• candies in a box

In contrast, continuous data occur somewhere in a real number interval of values, and it’s not
possible to count the number of distinct values ahead of time. Examples include:

• height or weight of students in a class

• times of a swimming race

• length of leaves fallen from a tree

5.2 Presentation of Data

Numerical data is typically arranged in a table, which has one row for each group or class of
data. For discrete data you usually have one row per distinct data value, whereas for continuous
data each row typically represents a subinterval of the overall range of possible values. Be careful
when labeling the range groups to partition the data uniquely into groups. If the first group
were labeled as 0 <= v <= 5 and the second group as 5 <= v <= 10, then the number 5
belongs to both groups. They should instead be labeled 0 <= v < 5 and the second group as
5 <= v < 10 so that any value (like 5 or 10) falls in exactly one subinterval.

5.2.1 Frequency Distribution Tables

The frequency is the number of times a particular value occurs in the sample. A frequency
distribution table lists each possible value, or range of values, in increasing order, along with the
frequency with which that value occurs. Table 4 shows an example of a frequency distribution
table for family sizes of students in a classroom. The sum of the “Students” column gives the
total number of values in the data set.
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Family Size Students

2 3

3 6

4 6

5 2

6 1

TOTAL 18

Table 4: Frequency Table of Family Size

5.2.2 Frequency Histograms with Equal Class Intervals

A frequency histogram that uses equal class intervals (or discrete values) is called a bar chart.
It’s the simplest way to visualize grouped data. Figure 89 shows an example.

Figure 89: Bar Chart Showing Family Size Frequency Table Data from Table 4

5.3 Mean

The mean (also known as the average) is one measure of the central tendency of a list of data
values. To calculate the mean of list of numbers, add up the numbers and divide by the total
number of values. The symbol for the mean is x̄, so the formula for the mean of a list of n
numbers is:

x̄ =

∑
xi

n

Multiplying both sides of this equation by n gives a useful corollary of this formula: the sum of
the n numbers in the list equals n times the mean:

nx̄ =
∑

xi

If the data is in a frequency table, then you calculate the total value by multiplying each value
by its frequency and summing the results. The sum of the “Students” column gives the total
number of values in the data set, while the sum of the “Value × Frequency” column gives the

sum of all values. The mean of the data set in Table 5 is
64

18
= 3.56.
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Family Size Students Value × Frequency

2 3 6

3 6 18

4 6 24

5 2 10

6 1 6

TOTAL 18 64

Table 5: Frequency Table of Family Size with Product

If the data is in a grouped frequency table, you use the mid-interval value of each group to
represent the group for the purposes of multiplying by the frequency. The mean in this case is
only an estimate since the actual data values in each group are unknown. Based on the data in

Table 6, the estimated mean is
218.5

13
= 16.8

Race Time (min) Mid Interval Athletes Value × Frequency

10 ≤ t < 13 11.5 2 23.0

13 ≤ t < 16 14.5 3 43.5

16 ≤ t < 19 17.5 5 87.5

19 ≤ t < 22 20.5 2 41.0

22 ≤ t < 25 23.5 1 23.5

TOTAL 13 218.5

Table 6: Frequency Table with Grouped Data Uses Mid-Interval Values

5.4 Median

The median of a set of numbers is the figure that sits in the middle of the list when its values
are ordered from lowest to highest. After ordering the list, if it has an odd number of items,
then the median is the middle number. If it has an even number of items, then the median
is the average of the two central numbers. In contrast to the mean, the median value is not
affected by very large or very small values in the list, only by the number of items in the list
and their relative ordering.

If you have a frequency table like Table 4 in Section 5.2.1, “Frequency Distribution Tables”, then
after ensuring that the data values are listed in increasing order, you can calculate the median
as follows: start by dividng the total number of students by 2. Then calculate a running total
of the “Frequency” column until you get to a data value whose frequency causes the running
total to meet or exceed the middle number. If there are an even number of items, you might
have to take the average of the data value from two contiguous values if their frequency count
falls exactly between the two middle numbers. In this example, there are 18 students and the
9th value has family size 3 while the 10th student has family size 4. So here, the median is the
average of 5 and 6 which is 3+4

2 = 3.5.
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If you have a frequency table of grouped data like in Table 6 in Section 5.3, “Mean”, then
since there are 13 athletes total the median value will be the 7th race time value. It falls in
the third range of values from 16-19. Since there are 5 values in the previous two categories,
the 7th data value is 2

5 of the way across the interval (since it’s the 2nd out of 5 items in that
range). So the interpolated median is 16 + 2

5 · 3 = 17.2. We multiply the 2
5 times 3 because the

range is 3 wide.

5.5 Mode

The mode is the value that occurs the most frequently in the data set. In a frequency table,
it is the data value with the largest frequency. If the frequency table is reporting on grouped
data ranges, then the best you can say is which group has the highest frequency. It is possible
for a data set to have more than one mode or modal group.

5.6 Cumulative Frequency

5.6.1 Cumulative Frequency Table

It is a bit easier to compute the median from a frequency table if it is a cumulative frequency
table. Table 7 shows an alternative presentation of the data from Table 4 using cumulative
frequencies. Rather than listing the frequency of each data value, we list the running total of
how many students have the current family size or lower.

Family Size Cumulative Students

≤2 3

≤3 9

≤4 15

≤5 17

≤6 18

Table 7: Cumulative Frequency Table of Family Size

5.6.2 Cumulative Frequency Graphs

Once you have a cumulative frequency table, you can graph that data to produce a cumulative
frequency graph. You use the values as the x-axis data and the cumulative frequency for the
y-axis data. For discrete values like in Table 7, you plot the points representing each data value
and its corresponding cumulative frequency. Then you connect the points with a straight line
or smooth curve. Figure 90 shows the result of doing this for the cumulative frequency data in
Table 7.
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Figure 90: Cumulative Frequency Graph of Data in Table 7

Consider another data set with ranges of test scores shown in Table 8. The table lists the
individual frequency for each grade band, and contains an additional “C.F.” column where the
running total of the cumulative frequency appears.

Test Score Frequency C.F.

0-10 7 7

10-30 11 18

30-50 14 32

50-60 16 48

60-80 20 68

80-100 9 77

100-120 3 80

Table 8: Cumulative Frequency Table of Test Scores

Figure 91 shows the related cumulative frequency diagram. Notice that we use the upper
bound of each range as the x-coordinate value to plot (e.g. 10, 30, 50, 60, 80, 100, 120).
The figure also shows the lines for the first quartile (Q1), median (which is technically the 2nd
quartile), the third quartile (Q3). These quartile lines are obtained by taking the maximum
frequency value (80 in this example) and dividing it evenly into four segments. The maximum
frequency of 80 divided by 4 equals 20, so the first quartile occurs at a frequency of 20, second
quartile (or median) at frequency of 40, the third quartile at the frequency of 60, and the fourth
quartile at the frequency of 80. By drawing a horizontal line at the quartile boundaries on the
frequency axis until it intersects with the Cumulative Frequency Graph, we can then draw the
vertical line down from each intersection to find an estimate among the values on the “data
value” axis for the first quartile, median, and third quartile. Once you find the first quartile
value and the third quartile value, you can subtract the former from the latter to calculate the
interquartile range.
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Figure 91: Cumulative Frequency Graph of Data in Table 8

5.7 Dispersion

A data set of one thousand values whose mean is 85 can all be clumped near the mean, or
can be more spread out. The range, interquartile range, variance, and standard deviations are
calculations that help us understand how spread out (or “dispersed”) the data values are.

5.7.1 Range

The range is the simplest calculation to compute. Just subtract the smallest value from the
largest value.

5.7.2 Quartiles

In addition to the median, which is the data value right in the middle of the ordered list of
data, it can be useful to understand the values at the one quarter and three quarters boundaries
as well. The value that corresponds to the one quarter boundary is called the lower quartile,
while the value that corresponds to the three quarters boundary is the upper quartile. To find
the lower quartile, use the same technique as finding the median but do it on the ordered set
of data values the come before the median. To find the upper quartile, use the same technique
as finding the median, but do it on the ordered set of data values that come after the median.

5.7.3 Interquartile Range

To calculate the interquartile range, substract the lower quartile value from the upper quartile
value.

5.7.4 Box and Whiskers Plots

A box and whiskers plot is a quick way of visualizing how spread out the data set is. The
diagram in Figure 92 is typically drawn above a number line with a thin line whose left and
right edges mark the overall minimum and maximum data values. The left and right edges of
a box in the middle of the extremity line indicate the lower quartile and upper quartile values.
A further vertical line inside the box indicates the median.
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Figure 92: Box and Whiskers1

5.7.5 Percentiles

To calculate median and quartiles, we divide the cumulative frequency range into four equal
intervals with a midpoint and the midpoints of the lower and upper halves. If instead you divide
the cumulative frequency range into ten equal intervals, you can use that division to find the
data values in the 10 percentile ranges. Figure 93 shows the cumulative frequency graph for
the data in Table 8 in Section 5.6.2, “Cumulative Frequency Graphs”. The figure also shows
the lines for the ten percentiles boundaries on the frequency axis. These percentile lines are
obtained by taking the maximum frequency value (80 in this example) and dividing it evenly
into ten segments. The maximum frequency of 80 divided by 10 equals 8, so the 10 percentile
occurs at a frequency of 8, the 20 percentile occurs at a frequency of 16, the 30 percentile at a
frequency of 24, and so on until the 100 percentile that occurs at the frequency value 80. By
drawing a horizontal line at each percentile boundary on the frequency axis until it intersects
with the Cumulative Frequency Graph, we can then draw the vertical line down from each
intersection to find an estimate among the values on the “data value” axis for the 10 percentile,
20 percentile, 30 percentile, and so on.

Figure 93: Cumulative Frequency Graph of Data in Table 8

5.7.6 Variance

The variance is a measure of how spread out the data is. It is an average of the squared difference
between each data value and the mean. It is the square of the standard deviation. While the
formula to calculate the variance is shown below, in general you will always use your calculator
to compute it.

σ2 =

n∑
i=1

(xi − x̄)2

n

1Source: www.cimt.plymouth.ac.uk/projects/mepres/book9/bk9i16/bk9 16i4.htm
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5.7.7 Standard Deviation

The standard deviation is another measure of how spread out the data is. It is simply the square
root of the variance. Since the variance is computed by taking the average of the square of the
difference between each data value and the mean, by taking the square root of the variance we
end up with a number that is more easily comparable to the original data in the list. While the
formula to calculate the standard deviation is shown below, in general you will always use your
calculator to compute it.

σ =

√√√√√√
n∑
i=1

(xi − x̄)2

n

5.8 Use Cumulative Frequency Graph to Find Median and Quartiles

You can use a cumulative frequency diagram to estimate the median, upper quartile, and lower
quartile values, as well as calculate the interquartile range. To find the median, draw a horizon-
tal line at the point on the y-axis at exactly one half of the range of cumulative frequency. In
the example in Figure 91 the cumulative frequency range is 80, so we draw the horizontal line
at y = 40. At the point where this horizontal line intersects the cumulative frequency graph,
draw a vertical line down to the x-axis. The point where it intersects the x-axis is an estimate
of the median. In this example, it is 55.

To estimate the upper quartile value, repeat the same process but start the horizontal line
at one half of the upper half of the cumulative frequency range. Half way between 40 and 80
is 60, so drawing a horizontal line across at y = 60 and then down from where it intersects the
cumulative frequency graph gives an upper quartile value of about 72.

To estimate the lower quartile value, repeat the same process but start the horizontal line
at one half of the lower half of the cumulative frequency range. Half way between 0 and 40 is
20, so drawing a horizontal line across at y = 20 and then down from where it intersects the
cumulative frequency graph gives an upper quartile value of about 33.

To find the interquartile range, subtract the lower quartile value from the upper quartile value.
In this example, it is 72− 33 = 39.

To find percentage values, you would use a similar technique but rather than drawing a horizon-
tal line at one quarter, one half and three quarters points in the cumulative frequency range on
the y-axis, you would instead divide that range into ten equal intervals and draw the horizontal
lines over to the graph and then vertical lines down to the x-axis from each of the 10 interval
boundary points.

5.9 Computing Statistics Using Your Calculator

In a few clicks, your graphing calculator will compute all of the relevant statistics we’ve men-
tioned in these notes. With the TI-Nspire calculator, you start by entering a data list. The
procedure is slightly different depending on whether you are entering a “raw” list of data that
includes duplicates or else using a list with distinct data values and a frequency count.
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5.9.1 Calculating Statistics for a Single List

In your calculator, start by inserting a new “Lists and Spreadsheets” tab into your document.
In the first row of the table (colored grey and identified by an icon of a tag/label at the far
left) enter a name for your column of data in the cell labeled A. I like to use the word data.
Skip the second row of the table (also grey, with an equals sign at the left) and enter your data
values in the cells of column A starting with the row labeled 1. After you have entered every
data value into this “data” column, you can compute the statistics by following these steps:

• With your cursor in a cell in the first column, press [menu] and choose Statistics →Stat
Calculations →One-Variable Statistics...

• In the small One-Variable Statistics dialog, enter 1 for Num of Lists and click [OK ]

• In the larger One-Variable Statistics dialog, choose ’data from the X1 List dropdown
list

• Click [OK ]

Figure 94 shows the before and after screenshots after following these instructions. The statistics
are all calculated and placed in the spreadsheet column you indicated in the dialog. By default,
it will have chosen the first empty column in your spreadsheet. If you scroll through the results,
you’ll find the minimum (MinX) , maximum (MaxX), median (MedianX), lower quartile (Q1X),
upper quartile (Q3X), number of items (n), the mean (x̄), the sum of all the items (

∑
x), and

the standard deviation (σx). NOTE: Do not use the statistic labeled (sx). You need to use
σx always on the IB Exams.

Figure 94: One-Variable Statistics on a Simple List of Data

5.9.2 Calculating Statistics for a List with Frequency

If your data includes values and frequency information, you can enter the data in that way.
The steps are similar to those in Section 5.9.1, “Calculating Statistics for a Single List”. Add
a “Lists and Spreadsheets” type of tab to your document. Label column A with the name
data and column B with the label freq. Enter your data values in the “data” column and the
corresponding frequency values in the “freq” column. Then do these steps:

• With your cursor in a cell in the first column, press [menu] and choose Statistics →Stat
Calculations →One-Variable Statistics...

• In the small One-Variable Statistics dialog, enter 1 for Num of Lists and click [OK ]

• In the larger One-Variable Statistics dialog, choose ’data from the X1 List dropdown
list and choose ’freq from the Frequency List dropdown list

• Click [OK ]

Figure 95 shows the before and after screenshots after following these instructions. The statistics
are all calculated and placed in the spreadsheet column you indicated in the dialog. By default,
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it will have chosen the first empty column in your spreadsheet. If you scroll through the results,
you’ll find the minimum (MinX) , maximum (MaxX), median (MedianX), lower quartile (Q1X),
upper quartile (Q3X), number of items (n), the mean (x̄), the sum of all the items (

∑
x), and

the standard deviation (σx). NOTE: Do not use the statistic labeled (sx). You need to use
σx always on the IB Exams.

Figure 95: One-Variable Statistics on a List of Data with Frequencies

5.10 Linear Correlation of Bivariate Data

5.10.1 Scatter Diagrams

You can graph the relationship between any two variables using a scatter diagram. If there
is some correlation between the variables, then the points you plot should show some kind of
trend. For example, suppose you graph the number of hours each student in a class studied
for an exam on one axis against the grade each respective student attained on an exam on the
other axis. You would expect the scatter plot to exhibit a trend that studying for more hours
produced a higher grade. This would illustrate a correlation between the two variables (hours
of study and grade).

Student Hours of Study Test Score

Joe 3 82

June 1 35

Judy 6 85

Jason 4.5 77

James 5 80

Julia 8 99

Jupiter 2 45

Table 9: Hours of Study versus Test Score

To graph this data on the TI-Nspire, add a “Lists and Spreadsheets” tab to your document and
label the two columns in the top row with hours and score. Proceed to enter your data from
the table into these two columns. Then, to create the scatter plot do the following:

• Press [Ctrl ]+[Doc] to insert a page, and choose Add Graphs

• In the graph tab, press [menu] and choose Graph Entry/Edit →Scatter Plot

• In the popup window that appears with the cursor next to the x←, press [var ] and
choose the hours data column.
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• Then tab to place the cursor next to the y ←, press [var ] and choose the score data
column.

• Press [enter ], then use the graph zoom functions to view all the data

You should end up with a scatter plot that looks like Figure 96.

Figure 96: Scatter Plot of Hours Studied Versus Test Score

5.10.2 Pearson’s Product-Moment Correlation Coefficient r

The Pearson’s Product-Moment Correlation Coefficient is a number between −1 and 1 that
your calculator can compute to tell you how strong of a relationship there is between the two
data series you have scatter-plotted. The number r is one of the statistics that your calculator
will compute when you ask it to calculate the line of best fit (also known as linear regression).
Figure 97 shows some typical values of r and how that relates to the strength of correlation.

Figure 97: Examples of Different Levels of Correlation2

5.10.3 Lines of Best Fit

The line of best fit is a straight line that minimizes the squared difference between the data
points and the points on the line. It’s also called the “least squares regression line”, and your
calculator will compute if for you. In the process of determining the line of best fit, it will
compute the m (slope) and b (y-intercept) of that line’s equation (y = mx + b). It will also
calculate the correlation coefficient, which is shown as the value r value in Figure 98.

5.10.4 Equation of the Regression Line

To compute the equation of the regression line on the TI-Nspire, go back to the tab containing
your labeled data columns and do the following:

2Source: mathsisfun.com/data/correlation.html
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• Press [Menu] and choose Statistics →Stat Calculations →Linear Regression (mx+b)

• In the Linear Regression window that appears, chose hours for the X List and choose
score for the Y List data column.

• Note the name of the equation in the Save RegEqn to field.

• Click [OK ]

This will produce the additional column of data as shown in Figure 98. The highlighted box is
the correlation coefficient, labeled r.

Figure 98: Slope, y-Intercept, and Correlation Coefficient of Linear Regression

To add the regression line to the scatter plot graph, click back to activate the graph tab and
do the following:

• Press [Menu] and choose Graph Entry/Edit →Function

• Arrow up to see the f1(x) function has already been filled in with the m slope value and
b value of the y-intercept.

• Then press [Enter ] to see the line on the graph

Figure 99: Linear Regression Line of Best Fit for Hours/Grade Data
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6 Probability

6.1 Probability Concepts

Probability measures the chance that some event will occur. If you purchase a single ticket
for a raffle, and you know that 250 raffle tickets were sold in total, then you know that your
chances of winning are one in 250. Expressed as a fraction, your chances of winning are 1

250 . Ex-
pressed as a decimal, your chances are 0.004. Expressed as a percentage, your chances are 0.4%.

A probability is always a number between 0 and 1. A probability of zero (0) means that it
is impossible for something to occur, while a probability of one (1) means that it will always
happen. As with most things in life, the true probability of something’s occurring lies some-
where in between impossible (0) and certain (1).

For a given situation, the sample space is the universe U of all possible things that can oc-
cur. An event A is one of the things that can occur. An uppercase letter P represents the
probability (or chance) that a given event will occur. Instead of always writing out the words
“the probability that event A will happen”, we write P (A).

6.2 Probability of an Event

If we use n(A) to mean the number of ways that event A can occur, then the probability of an
event A is:

P (A) =
Number of ways A can occur

Number of all possible events in the sample space
=
n(A)

n(U)

6.3 Probability of an Event’s Not Occurring

If A is some event whose probability we’re interested in, P (A) represents the probability that A
will occur. If we visualize the universe of all things that can occur as a diagram, then as shown
in Figure 100 on the left, we can represent P (A) as a shaded part of the entire set of possibilities
U . All of the things in the universe other than A are called the “complement” of A and we use
the “prime” symbol from set theory to represent it. As shown in the diagram on the right in
Figure 100, this A′ represents the probability that anything other than A happens. In other
words, it represents the probability that A does not happen. Since it is certain that either A will
happen or something other than A will happen, it makes intuitive sense that P (A)+P (A′) = 1.

If we rearrange the equality above, we see that P (A′) = 1 − P (A). In other words, if P (A) is
the probability that A will happen, 1− P (A) is the probability that A will not occur.

Figure 100: Visualizing the Probability of Event A and A′

6.4 Independent, Dependent, and Mutually Exclusive Events

Two events A and B are independent if the chance that A occurs is not affected by whether
B occurs or not. For example, if you roll a die three times and it comes up 4 each time, what
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is the chance that the next roll will also be 4? The chance is simply 1
6 ≈ 16.7%, just like any

other die roll. The previous rolls did not affect the chances on the next roll.

However, if you are playing blackjack with a single deck of cards, and the dealer just drew
a Queen of Hearts, since there is now one fewer card in the deck, the probability of drawing a
Queen or of drawing a card with the suit of Hearts is now different. In this case, we say the
events are dependent since the outcome of one can affect the probability of the other.

Two events A and B are mutually exclusive if the two events cannot happen at the same
time.

6.5 Probability of A and B for Independent Events

When events A and B are independent, to calculate the probability that both event A and
event B will occur, you multiply their probabilities together: P (A ∩B) = P (A)× P (B).

NOTE: P (A ∩ B) = P (A) × P (B) only works when A and B and independent! See
Section 6.10, “Conditional Probability of Dependent Events” for how to work with probability
of dependent events.

Consider a deck of playing cards, and the events H and K about an arbitrary card:

H = The suit of the card is Hearts

K = The card is a King

Then, to compute the probability that a card is both a King and has the suit Hearts, we multiply
the probabilities:

P (H ∩K) = P (H)× P (K)

Since a probability is a fraction between 0 and 1, multiplying two positive fractions that are
both less than one produces a number that is smaller than either of these two original quantities.
In the example with playing cards shown in Figure 101 we would have P (H) = 13

52 = 1
4 and

P (K) = 4
52 = 1

13 . Therefore, the probability of drawing a card that is both a King and has suit
of Hearts, is:

P (H ∩K) = P (H)× P (K) =
1

4
× 1

13
=

1

52

We can get the same answer by counting the number of ways that these events overlap (or
intersect). In Figure 101, we see that P (H ∩K) is represented by the intersection of the circles
representing P (H) for Hearts and P (K) for Kings. Since there is only one card out of 52 that
is both a King and a Heart, we again get a probability of 1

52 .
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Figure 101: Visualizing Overlapping Events 3

6.6 Probability of A or B for Mutually Exclusive Events

To calculate the probability that either event A or event B will occur, you add their probabilities
together: P (A∪B) = P (A) +P (B), however as shown in Figure 102, this only works if the two
events are mutually exclusive. This means that it would never be possible that both A and B
could happen at the same time. Consider a set of playing cards, and let the statements A and
K about an arbitrary card be the following:

A = The card is an Ace

K = The card is a King

Then we see that the probability that a card is either an Ace or a King is just the sum of the
separate probabilities P (A ∪K) = P (A) + P (K).

Figure 102: Visualizing Mutually Exclusive Events4

6.7 Probability of Mutually Exclusive Events

If events A and B are mutually exclusive, that means they cannot happen at the same time.
Therefore, the probability of having both A and B occur is zero:

P (A ∩B) = 0

This works both ways, if you can demonstrate that P (A) and P (B) have no overlap (or inter-
section), then you can say that A and B are mutually exclusive.

6.8 Probability of A or B for Non-Mutually Exclusive Events

If we consider the events H and K from Section 6.5, “Probability of A and B for Independent
Events”, we see in Figure 101 that simply adding together P (H) and P (K), we would end up
counting the King of Hearts twice and get the wrong answer. So, in general when computing
the probability of combined events, we need to add the probabilities of the individual events,
and then subtract the probability of their both occurring to avoid double-counting any events
in the intersection.

P (A ∪B) = P (A) + P (B)− P (A ∩B)

3Source: mathsisfun.com/data/probability-events-mutually-exclusive.html
4Source: mathsisfun.com/data/probability-events-mutually-exclusive.html
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6.9 Lists and Tables of Outcomes

If the number of events is small, create a list of all the possible outcomes, then count the number
of outcomes that meet the criteria you’re looking for to compute:

Number of outcomes that meet the criteria

All possible outcomes

6.10 Conditional Probability of Dependent Events

If an event A depends on an event B then we talk about the conditional probability of A given B
and write P (A | B). This means that assuming B has already happened, what is the probability
A will happen. The formula to calculate this conditional probability is:

P (A | B) =
Probability of A and B happening

Probability of B that already occurred
=
P (A ∩B)

P (B)

The order of the A and B is important. That is, in general P (A | B) 6= P (B | A). To calculate
the probability of B given A, the formula is:

P (B | A) =
Probability of A and B happening

Probability of A that already occurred
=
P (A ∩B)

P (A)

When you are calculating a conditional probability P (A | B) using a list or table of results, first
narrow down the set of all possible outcomes to only those in the sample space where event B
is true. Then, out of this subset, compute how many of the remaining possibilities would meet
the criteria to make event A true. The conditional probability will then be the fraction:

P (A | B) =
Number of outcomes where A is true (In subset of outcomes where B is true)

Number of outcomes in the sample space where B is true

6.11 Testing for Independent Events

If A and B are independent events, then the probability that A will occur will be the same
whether or not B occurred, so you have:

P (A) = P (A | B) = P
(
A
∣∣ B′)

However, if you are asked to test that two events are independent, it is enough to show that:

P (A ∩B) = P (A)× P (B)

6.12 Venn Diagrams

When there are multiple events, draw a Venn diagram to count the outcomes that qualify for
each event. When you draw your diagram, draw one circle for each event and make the circles
overlap in case there are some cases that fall in the intersection. The space inside the outer
rectangle but not inside any of the circles represents the sample space outcomes that don’t
qualify for any of the events. If any of the quantities is unknown, call one of them x and then
express the others in terms of the known information and this x variable. The problem will give
you some of the probabilities or number of qualifying members to fill in, leaving some for you to
determine using the facts provided. If nothing else, you know that all of the probabilities must
add up to 1 (or if you’re counting set members, must add up to the total number of things).
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6.13 Tree Diagrams

Tree diagrams are good for determining the probability of a sequence of events and help you
ensure that you have accounted for all the different possibilities of one event occurring (or not
occurring) followed by another event happening (or not). Each time the tree branches into
multiple outcomes, the probability of those outcomes adds up to one (1) because they account
for all choices. The probabilities at the leaf nodes on the right of the diagram represent the
conditional probability of following the particular set of paths to get from the root of the tree
to that particular leaf node. Each of these leaf node probabilities is calculated by multiplying
the probabilities along each path line to get to the destination node in question. Then, if there
are multiple paths in the tree that satisfy the conditions of the problem, you add together the
qualifying leaf node probabilities.

Example Consider an example of a bag containing 4 white balls and 3 black balls. If two balls
are picked in succession without replacement, what is the probability of picking one white ball
and one black ball?

Solution We draw the tree diagram in Figure 103. For the first event “Pick 1” we draw
branches for the two possible outcomes: one for drawing a black ball, and one for drawing a
white ball. We write the probability of drawing a black ball

(
3
7

)
along that branch and write

the probability of drawing a white ball
(
4
7

)
along its branch. For the second event “Pick 2”

the number of white and black balls remaining is different depending on what happened on
“Pick 1”. On the upper branch of the tree, corresponding to having first picked a black ball,
we draw two new branches representing the possible outcomes of the second pick. Along this
branch, during pick 1 a black ball was drawn so there are 4 white balls and 2 black balls left.
We write the probability of drawing a black

(
2
6 = 1

3

)
or white

(
4
6 = 2

3

)
ball along the respective

branches. On the lower branch of the tree, corresponding to having first picked a white ball,
we draw two new branches representing the possible outcomes of the second pick. Along this
branch, during pick 1 a white ball was drawn so there are 3 white balls and 3 black balls left.
We write the probability of drawing a black

(
3
6 = 1

2

)
or white

(
3
6 = 1

2

)
ball along the respective

branches. The four final leaf nodes of the tree represent the conditional probability of following
that respective set of branches. The probabilities along the paths taken to reach each final leaf
node are multiplied together. Then, to get the final answer to the question, we add together
the different leaf node probabilities that represent drawing one white ball and one black ball.
This includes:

P (one white and one black ball) = P (B2 |W1) + P (W2 |B1) =
2

7
+

2

7
=

4

7
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Pick 1
4W, 3B

Pick 2
3W, 3B

P (W2 |W1) = 4
7 ·

1
2 = 2

7

W
1
2

P (B2 |W1) = 4
7 ·

1
2 =

2

7B
1
2

W
4
7

Pick 2
4W, 2B

P (W2 |B1) = 3
7 ·

2
3 =

2

7

W
2
3

P (B2 |B1) = 3
7 ·

1
3 = 1

7B
1
3

B
3
7

Figure 103: Tree Diagram for Successive Events

6.14 Probabilities With and Without Replacement

For repeated trials, understand whether the problem is asking for the probability of a series
of events with replacement or without replacement. If your experiment involves replacing the
selected element after each trial, then the probability of each trial is independent of the other
trials that came before or which will come after. Since each trial is an independent event, we
know from Section 6.5, “Probability of A and B for Independent Events” that:

P (E1 ∩ E2 ∩ · · · ∩ En) = P (E1)× P (E2)× · · · × P (En)

On the other hand, if the problem asks for the probability involving a series of events without
replacement, then you need to use a tree diagram to work out the conditional probabilities for
all the possible branches involved in the multiple trials. This is because when you are working
without replacement the outcome of a previous trial affects the probabilities of the next trial as
we saw in the example in Section 6.13, “Tree Diagrams”.

6.15 Discrete Random Variables and Their Probability Distributions

When you calculate the probability of an random event, if the number of possible outcomes
is discrete (i.e. countable) then you can use a probability distribution table to document the
probability of each.

6.15.1 Explicitly Listed Probabilities

Table 10 shows the probability distribution table for rolling a fair die. The values in the top
row of the table, labeled with a lower case x, represent the distinct discrete values that a fair
die roll can produce. The values in the bottom row of the table, labeled with P (X = x),
represent the probability of each possible outcome. The uppercase letter X in the notation
P (X = x) represents the discrete random variable. On each trial it will randomly take on one
of the possible values listed in the top row of the table. So, the notation P (X = x) can be read
“The probability that the random variable X will take on the value x” for each possible value
x. Since the probability distribution table exhaustively lists every possible outcome for a given
trial, then all of the probabilities in the P (X = x) row must add up to one (1).
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x 1 2 3 4 5 6

P (X = x) 1
6

1
6

1
6

1
6

1
6

1
6

Table 10: Probability Distribution of Rolling a Die

If all of the probabilities in the P (X = x) row have the same value, then we say that the
distribution is uniform or that the event has all equally likely outcomes.

6.15.2 Probability Distribution Given by a Function

The probability distribution can also be given by a function like this:

P (X = x) =

{
kx(x− 1) x = 2, 3, 4, 5, 6

0 Otherwise

This means that there are five possible values for x (2,3,4,5,6), and that for each value x the
respective probability is given by kx(x− 1). Table 11 shows the probabilities obtained by using
this formula, substituting in the correct value of x in each column.

x 2 3 4 5 6

P (X = x) k · 2 · 1 k · 3 · 2 k · 4 · 3 k · 5 · 4 k · 6 · 5

Table 11: Probability Distribution Based on a Function (with k to be determined)

Since the probabilities across the second row of the table must add up to one, we can set up an
equation and solve for k:

k · 2 · 1 + k · 3 · 2 + k · 4 · 3 + k · 5 · 4 + k · 6 · 5 = 1

2k + 6k + 12k + 20k + 30k = 1

70k = 1

k =
1

70

So, substituting the value k back into each probability in Table 11 and reducing the fraction to
lowest terms, we get the probability distribution that corresponds to the function definition in
Table 12.

x 2 3 4 5 6

P (X = x) 1
35

3
35

6
35

2
7

3
7

Table 12: Probability Distribution Based on a Function

6.15.3 Explicit Probability Distribution Involving an Unknown

Instead of a function as in the example in the previous section, you might be given explicit
probabilities in the distribution involving an unknown variable k as shown in Table 13.
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x -1 0 2 3

P (X = x) 0.2 10k2 0.4 3k

Table 13: Probability Distribution Based on an Unknown

Since the probabilities across the second row of the table must add up to one, we can setup an
equation and solve for k:

10k2 + 3k + 0.2 + 0.4 = 1

10k2 + 3k − 0.4 = 0

100k2 + 30k − 4 = 0

(20k − 2)(5k + 2) = 0

k = 0.1 or − 0.4

Since the probability 3k in the table cannot be negative, we discard the solution k = −0.4 and
use only k = 0.1. Substituting the value k back into each probability in Table 13, we get the
probability distribution in Table 14.

x -1 0 2 3

P (X = x) 0.2 0.1 0.4 0.3

Table 14: Probability Distribution Based on an Unknown

6.16 Expected Value (Mean), E(X) for Discrete Data

The expected value is the mean of the data that you would get by randomly picking a large
number of trials from the data values having the given probability distribution. The expected
value formula allows us to calculate the mean based only on the values that occur and the
probability that each value occurs. In particular, we don’t need to know the number of trials
to predict what the mean will be. To find the expected value E(X) of a discrete probability
distribution, multiply each value x by its respective probability and add the results together.
So the definition is:

E(X) =
∑

x · P (X = x)

As we’ll see, the concept is logically equivalent to the technique explained in Section 5.3, “Mean”
for calculating the mean. In that section we computed the mean of the data in Table 5 by adding
up the Value × Frequency products (for each distinct value) and then dividing by the total
number of items:

x̄ =
2 · 3 + 3 · 6 + 4 · 6 + 5 · 2 + 6 · 1

18

Notice that we can divide each product in the sum in the numerator by the total number of
items in the denominator without changing the value of the mean.

x̄ =
2 · 3 + 3 · 6 + 4 · 6 + 5 · 2 + 6 · 1

18
Sum of (value × frequency) over total

= 2 · 3
18

+ 3 · 6
18

+ 4 · 6
18

+ 5 · 2
18

+ 6 · 1
18

Sum of (value × frequency percentage)
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What do these individual fractions represent? They are the fraction of total student family size
values that each family size’s frequency represents. For example, 3 students had the value 2 for
family size, so in the data set, the value 2 occurs 3

18 of the time. Expressed as a percentage, it
means that the value 2 occurs 16.7% of the time in this data set. It is the frequency percentage
that represents the probability of randomly picking a value 2 from the values in the data set.
You have 3 chances in 18 to do so.

x̄ = 2 ·
3

18
+ 3 ·

6

18
+ 4 ·

6

18
+ 5 ·

2

18
+ 6 ·

1

18
Sum of (value × frequency percentage)

= 2 · P (X = 2) + 3 · P (X = 3) Expected value of frequency distribution

+ 4 · P (X = 4) + 5 · P (X = 5)

+ 6 · P (X = 6)

Table 15 shows the family size data from Section 5.3, “Mean”, but calculates the Frequency
Percentage instead of the “Value × Frequency”.

Family Size Students Frequency Percentage P (X = x)

2 3 3/18 = 0.167

3 6 6/18 = 0.333

4 6 6/18 = 0.333

5 2 2/18 = 0.111

6 1 1/18 = 0.056

TOTAL 18 1

Table 15: Frequency Table of Family Size with Product

We can write this same information in a probability distribution table as shown in Table 16.

x 2 3 4 5 6

P (X = x) 0.167 0.333 0.333 0.111 0.056

Table 16: Probability Distribution of Student Family Size Data Set

Using the formula for the expected value, we can calculate the mean. The result is the same
value we obtained in Section 5.3, “Mean” for the same dataset, but done using the probability
distribution instead.

E(x) = 2 · P (X = 2) + 3 · P (X = 3) + 4 · P (X = 4) + 5 · P (X = 5) + 6 · P (X = 6)

= 2 · 0.167 + 3 · 0.333 + 4 · 0.333 + 5 · 0.111 + 6 · 0.056

= 3.56

6.16.1 Expected Value for a “Fair” Game

A game is said to be a “fair” if the expected value for points (or winnings) is zero.
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6.17 Binomial Distribution

The binomial probability distribution is a special kind of discrete distribution. You use it when
you know:

• The number of trials is fixed

• There are only two possible outcomes

– Success or Failure

– “A happens” or “A does not happen” [A or A′]

• Each trial is independent

• Probability of success remains the same

Assume you have a binomial distribution where the probability of success is p and the total
number of trials is n. In general, the probability P (X = k) of having k successes out of those
n total trials is given by the formula:

P (X = k) =

(
n

k

)
pk (1− p)n−k

When you perform n trials and succeed k times, then n − k times you must fail as shown in
Figure 104.

Figure 104: Visualizing Successful and Failed Trials

The term pk in the formula above is the probability of getting k successes. And we know that
if p is the probability of success, then 1 − p is the probability of failure. Therefore, the term
(1− p)n−k in the formula represents the probability of getting n − k failures. However, you
don’t necessarily have k successes in a row, followed by n−k failures in a row. Your k successes
and n − k failures might occur in many different sequences. This is easier to understand if we
look at a specific example. Imagine doing five trials and getting 3 successes and 2 failures. In
other words, we’ve let n = 5 and k = 3, so that the number of failures (n−k) must be 5−3 = 2.
Figure 105 shows the ten ways you can get three successes in five trials.

Figure 105: Visualizing Ten Ways to Get Three Successes in Five Trials

The

(
n

k

)
coefficient in the formula represents the number of different ways out of n trials that

you can have k successes. By multiplying the probabilities of getting k successes and n − k
failures by the number of different ways this outcome can occur, we get the probability of all
the different possible combinations in which you might succeed k times out of n trials.
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Example Consider the example of the mailman delivering mail. Let’s say that the probability
that he delivers mail to my mailbox is 2 days in 7. I want to calculate the probability of receiv-
ing mail 5 days out of 14.

The number of trials is fixed at 14. Every day, either the mailman brings mail or he does
not bring mail, so there are only two possibilities. Whether he brings mail yesterday does not
affect whether he will bring mail today, so each trial is independent. The probability of success
(i.e. his bringing me mail) remains the same, which is 2

7 = 0.286. Therefore we say that the
distribution is X ∼ B (14, 0.286).

There are three parts to the calculation of the probability:(
14

5

)
︸ ︷︷ ︸

Number of combinations of

5 mail-getting days in 14

× (0.286)5︸ ︷︷ ︸
Probability of

getting mail

5 times

× (1− 0.286)9︸ ︷︷ ︸
Probability of

not getting mail

9 times

= 0.1847

So the probability that he brings me mail on 5 days out of 14 is 18.5%.

If the problem asks for the probability that the mailman brings mail on all 14 days, that is
a simpler calculation of just (0.286)14. Similarly, the probability that the mailman does not
bring mail on any of the 14 days is (1−0.286)14. However, the more interesting problems involv-
ing success on some subset of the total number of trials involve the more complex calculation.
Luckily, your calculator makes it easy.

6.17.1 Using the Calculator for Binomial Distribution Problems

Once you have identified the problem as a binomial distribution, your calculator can quickly
get you the answer. The are several kinds of problems you will encounter:

• Probability of success k times out of n trials

• Probability of success k or fewer times out of n trials

• Probability of success k or more times out of n trials

• Probability of success from k to m times out of n trials

All of these problems can be handled using the “Binomial Cumulative Distribution Function”
(binomCdf) function on your calculator. To access that function from a calculator tab, do the
following:

• With your cursor in a calculator tab, press [menu] and choose Statistics →Distributions
→Binomial Cdf...

• In the Binomial Cdf dialog, enter the number of trials and the probability of success, the
lower bound of the number of successes you want to find and the upper bound on the
number of successes

• Click [OK ]

In order to find the probability of success...

• Exactly k times out of n trials, enter the value k for both the lower bound and upper
bound.

• k or fewer times out of n trials, enter the value zero (0) for the lower bound and k for the
upper bound.
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• k or more times out of n trials, enter the value k for the lower bound and n for the upper
bound.

• from k to m times out of n trials, enter the value k for the lower bound and m for the
upper bound.

So, for example, using the TI-Nspire CX calculator, we could calculate the probability that my
mailman brings mail on 5, 6, or 7 days out of 14, by entering the values shown in Figure 106 to
get the answer of 0.346.

Figure 106: Calculating Cumulative Probability Using the Binomial Distribution

6.17.2 Tip for Calculators Whose binomCdf Does Not Have Lower Bound

If your calculator’s binomCdf function does not allow you to input a lower bound, you need to
do problems that ask for “k or more times” and “between k and m” times a slightly different
way. These calculator’s binomCdf only allows specifying an upper bound, and calculates the
cumulative probability from zero times up through the upper bound number of times.

Doing “k or More Successes” on TI-84 If a binomial distribution problem has 10 trials, a
success probability of 0.18, and asks you to calculate the probability of success on 7 or more
times, start by remembering that the probability of “7 or more successes” on a problem with
10 trials means P (7) + P (8) + P (9) + P (10). Also remember that the sum of the probabilities
for all trials must equal one (1):

P (0) + P (1) + P (2) + P (3) + P (4) + P (5) + P (6) + P (7) + P (8) + P (9) + P (10) = 1

The sum of P (0) + P (1) + P (2) + P (3) + P (4) + P (5) + P (6) can be computed using your
calculator’s binomCdf(10,0.18,6) function that accumulates probabilities always starting at
zero successes up to your upper bound number of successes, so we can substitute that into the
above expression above and solve for the quantity we’re being asked to calculate like this:

P (0) + P (1) + P (2) + P (3) + P (4) + P (5) + P (6)

+P (7) + P (8) + P (9) + P (10) = 1

binomCdf(10,0.18,6) + P (7) + P (8) + P (9) + P (10) = 1

P (7) + P (8) + P (9) + P (10) = 1− binomCdf(10,0.18,6)

Therefore, to calculate the probability of “k or more successes”, use your calculator to find
1− binomCdf(n,p,k-1).
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Doing “Between k and m Successes” on TI-84 If a binomial distribution problem has 10
trials, a success probability of 0.18, and asks you to calculate the probability of between 4
and 6 success, start by remembering that binomCdf(10,0.18,6) represents the sum of the
probabilities of success for zero up to 6 times, and then rearranging the equation to get your
desired cumulative probability on one side:

binomCdf(10,0.18,6) = P (0) + P (1) + P (2) + P (3)

+ P (4) + P (5) + P (6)

binomCdf(10,0.18,6)− P (0)− P (1)− P (2)− P (3) = P (4) + P (5) + P (6)

binomCdf(10,0.18,6)− (P (0) + P (1) + P (2) + P (3)) = P (4) + P (5) + P (6)

The sum of P (0)+P (1)+P (2)+P (3) can be computed using your calculator’s binomCdf(10,0.18,3)
function that accumulates probabilities always starting at zero successes up to your upper bound
number of successes, so we can substitute that into the above expression above and solve for
the quantity we’re being asked to calculate like this:

binomCdf(10,0.18,6)− (P (0) + P (1) + P (2) + P (3)) = P (4) + P (5) + P (6)

binomCdf(10,0.18,6)− binomCdf(10,0.18,3) = P (4) + P (5) + P (6)

Therefore, to calculate the probability of “Between k and m successes”, use your calculator to
find binomCdf(n,p,m)− binomCdf(n,p,k-1).

6.18 Mean and Variance of the Binomial Distribution

The expected mean of the binomial distribution is just the number of trials times the probability
of success. That is:

If X ∼ B (n, p) , then E(X) = np

The expected variance of the binomial distribution is the number of trials times the probability
of success times the probability of failure. That is:

If X ∼ B (n, p) , then Var (X) = np(1− p) and therefore StdDev (X) =
√
np(1− p)

6.18.1 Example of Mean and Variance of Binomial Distribution

The probability of obtaining heads on a biased coin is 0.4. The coin is tossed 600 times. Find
the mean number of heads and the standard deviation of the number of heads. Then, find the
probability that the number of heads is less than one standard deviation away from the mean.

The coin toss comes up heads or not heads, so there are only two possibilities, and the prob-
ability of coming up heads is the same on every trial. So, this is a binomial distribution with
600 trials and a probability of success (i.e. coming up heads) of 0.4. The mean number of
heads for the binomial distribution is just the number of trials times the probability of success,
so 600 × 0.4 = 240. Therefore, in 600 tosses we expect a mean of 240 heads. The standard
deviation is the square root of the number of trials times the probability of success times that
of failure, so

√
600× 0.4× 0.6 = 12.

Given a mean of 240, values that are less than or equal to one standard deviation away
from the mean are those between 240 − 12 = 228 and 240 + 12 = 252. However, the problem
here only asks for those values less than one standard deviation away, so those are values
between 240− 11 = 229 and 240 + 11 = 251. So, using the calculator we can compute the cu-
mulative probability of this range of successes using binomCdf(600,0.4,229,251) which equals
0.66210447239411 or to three significant figures 0.662.
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6.19 Normal Distribution and Curves

The Normal Distribution models many frequently occurring distributions of continuous data
like the heights or weights of students in a class, the times of a swimming race, or the lengths
of leaves fallen from a tree. Its probability density function is a continuous function in x that
has a “bell” shape that depends on the mean (µ) and standard deviation (σ) of the data set
being considered. The curve has the following properties:

• It is symmetric about the mean µ

• The median and the mode are the same as the mean

• The area under the curve between x = a and x = b represents the probability of randomly
choosing data values in a given range a ≤ x ≤ b

• The total area under the curve is one (1) (i.e. 100%)

• 68% of the values fall within one standard deviation from the mean

• 95% of the values fall within two standard deviations from the mean

• 99% of the values fall within three standard deviations from the mean

6.20 Graphing the Normal Distribution and Computing Bounded Area

Your calculator provides the built-in function normPdf(x,µ,σ) that represents the Normal Dis-
tribution’s continuous probability density function for the data set with mean µ and standard
deviation σ. To visualize any data set’s probability density function, graph normPdf(x,µ,σ),
supplying appropriate values for µ and σ. Then, to compute the probability that a random
variable X will take on a value between any two values a and b, use the calculator’s Analyze
Graph →Bounded Area capability to compute the area under the curve between these two
values.

For example, consider a data set of the heights of Ghanian women, where the population
mean µ = 159 cm and the standard deviation σ = 4.9 cm. Start by graphing the function
normPdf(x,159,4.9) and adjusting the graph window to be centered around the mean value
of 159. From the previous section, we know that 99% area under the graph should fall within
three standard deviations of the mean. So, you can use this fact to size the window to show the
x-axis from 159− 3 · 4.9 = 144.3 to 159 + 3 · 4.9 = 173.3.

Next, suppose you want to compute the probability that a random variable X’s value falls
in the range from 154.1 to 163.9. One way to do this is to compute the area under the prob-
ability density function we have graphed between these two values. To do that follow these
steps:

• While on a graph tab showing the appropriate normPdf(x,µ,σ) function, press [menu]

• Choose Analyze Graph →Bounded Area

• Click on the normPdf(x,µ,σ) function to identify the first curve

• Click on the x-axis to identify the second curve

• Instead of using the pointer, just type in 154.1 and press [Enter ] to set the lower bound

• Type in 163.9 and press [Enter ] to set the upper bound

After following these steps, as shown in Figure 107 the bounded area under the curve appears
shaded in grey and the value of the bounded area appears (in this example 0.683) appears on
the graph.
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Figure 107: Area Under Normal PDF for µ = 159 and σ = 4.9 Between 154.1 and 163.9

Notice that the two boundaries selected were exactly one standard deviation away from the
mean value of 159. That is, 154.1 = 159− 1 · 4.9 and 163.9 = 159 + 1 · 4.9. As we would expect
from the rules of thumb outlined in Section 6.19, “Normal Distribution and Curves”, 68% of
the values fall within one standard deviation of the mean in a normally distributed data set.
So, the computed area of 0.683 under the curve from 154.1 to 163.9 agrees with this expectation
as this is 68.3%.

In general, we can remember that the probability that a random variable X takes on a value:

• between a and b, equals the area under the normal curve bounded by a and b.

• greater than a, equals the area under the normal curve bounded by a and ∞.

• less than a, equals the area under the normal curve bounded by −∞ and a.

• exactly a, equals 0 (there is no area under the normal curve between a and a).

For the bounded area graph cases involving −∞ and ∞, to avoid rescaling the graph, use a
number like µ+ 4σ instead of ∞ and a number µ− 4σ instead of −∞.

It’s good to visualize and understand the normal distribution probability calculation using
the area under the curve. However, in Section 6.22, “Using the Calculator for Normal Distribu-
tion Problems” we’ll learn an even simpler way to get the answer using the normCdf() function
without using a graph.

6.21 Standardizing Normal Variables to Get z-values (z-scores)

In order to work with a single curve for all different possible data sets having a normal distri-
bution, we standardize data values so that we can use the Standard Normal Distribution for all
calculations of probability. The standard normal distribution has a mean µ = 0 and standard
deviation σ = 1. We can convert back and forth between the actual data values in a given
data set and so-called z-value for the standard normal distribution using the formula below. If
you know the mean µ and the standard deviation σ of the values in the actual data set, then
for a given data value x, you compute its corresponding z-value by subtracting the mean and
dividing by the standard deviation:

z =
x− µ
σ

Of course, this formula can be used in reverse by rearranging it to solve for x. If you know
the mean µ and the standard deviation σ of the values in the actual data set, then for a given
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z-value, you compute its corresponding actual data value x by multiplying by the standard
deviation and adding the mean:

x = σz + µ

Figure 108: Standardizing Data to Work with Standard Normal Distribution5

6.22 Using the Calculator for Normal Distribution Problems

Once you have identified a normal distribution problem, your calculator can quickly get you the
answer. The are several kinds of problems you will encounter:

• Probability of getting a value less than or equal to k

• Probability of getting a value between k and m

• Probability of getting a value greater than or equal to k.

All of these problems can be handled using the “Normal Cumulative Distribution Function”
(normalCdf) function on your calculator. This function computes the area under the normal
distribution’s probability density function between the two values you supply. As explained in
Section 6.20, “Graphing the Normal Distribution and Computing Bounded Area”, this area is
the probability that a random variable X’s value will fall in the range specified by those two
values. To access the normalCdf function from a calculator tab, do the following:

• With your cursor in a calculator tab, press [menu] and choose Statistics →Distributions
→Normal Cdf...

• In the Normal Cdf dialog, enter the lower bound (or -9E999 for −∞), the upper bound
(or 9E999 for +∞), the mean µ, and the standard deviation σ.

• Click [OK ]

In order to find the probability of getting...

• a value less than or equal to k, then use normalCdf and enter the value −9E999 for the
lower bound and k for the upper bound.

• a value between k and m, then use normalCdf and enter the value k for the lower bound
and m for the upper bound.

• a value greater than or equal to k, then use normalCdf and enter the value k for the lower
bound and 9E999 for the upper bound.

If the value you are entering is a standardized z-value, then enter µ = 0 and σ = 1. Other-
wise, enter the correct µ and σ values for your dataset. Sometimes you may need to use the
z-value standardization formula first to determine a missing µ or σ value, given other provided
information in the problem.

5Source: mathsisfun.com/data/standard-normal-distribution.html
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6.22.1 Tip for Calculators Whose normalCdf Does Not Have Lower Bound

If your calculator’s normalCdf function does not allow you to input a lower bound, you need to
do problems that ask for P (X ≥ k), and P (k ≤ X ≤ m) a slightly different way.

Doing P (X ≥ k) on TI-84 To calculate P (X ≥ k), compute 1 − normalCdf(k, µ, σ). That
is, calculate P (X < k) and subtract it from 1.

Doing P (k ≤ X ≤ m) on TI-84 To calculate P (k ≤ X ≤ m), compute normalCdf(m,µ, σ)−
normalCdf(k, µ, σ). That is, calculate P (X < k) and subtract it from P (X < m).

6.23 Using Inverse Normal Cumulative Density Function

If you know the probability (V ) that a random variable X’s value is less than some unknown
number k, use the Inverse Normal function to find the value k that makes P (X < k) = V .

• With your cursor in a calculator tab, press [menu] and choose Statistics →Distributions
→Inverse Normal...

• In the Inverse Normal dialog, enter the probability value V for the Area, the mean µ, and
the standard deviation σ.

• Click [OK ]

If you are told that the probability V represents...

• P (x ≤ k), then use invNorm(V,µ,σ)

• P (x ≥ k), then use invNorm(1-V,µ,σ)

If the value you are entering is a standardized z-value, then enter µ = 0 and σ = 1. Other-
wise, enter the correct µ and σ values for your dataset. Sometimes you may need to use the
z-value standardization formula first to determine a missing µ or σ value, given other provided
information in the problem.

6.24 Determining z Value and σ from the Probability

Sometimes, a problem will give you the mean µ of your data but not provide the value of the
standard deviation σ. In this case, you must use additional information provided in the problem
(or determined in previous steps) in order to calculate the value of σ.

If you know the probability (i.e. area) that corresponds to one particular value in the data, and
you also know the mean µ, then you can figure out the σ from these values using the approach
described here. Consider the following example:

The weights of fish in a lake are normally distributed with a mean of 760 g and standard
deviation σ. It is known that 78.7% of the fish have weights between 705 g and 815 g. Find
the probability that a fish weighs less than 815g and write down the standardized (z) value for
815 g. Figure 109 shows the information we’ve been given.
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Figure 109: Visualizing Normalized Data for the Fish Problem

We notice that the range of fish weights we’re given 705 g and 815 g are symmetric about the
mean 760 g. One is 55 g less than the mean and the other is 55 g greater than the mean. Since
the normal distribution is symmetric about the mean, this allows us to conclude that the area
remaining under the curve below 705 g must be equal to the area remaining under the curve
above 815 g. That combined area remaining is 100%−78.7% = 21.3%, and since the two “tails”
are symmetric, we know that half of this remaining area must be in the left tail and half in
the right tail. So 21.3%

2 = 10.65% in each tail. Therefore, the probability (i.e. area) that a
fish weighs less than 815 g is the sum of the left tail (10.65%) and the central area given in the
problem between 705 g and 815 g. This equals 78.7 + 10.65 = 89.35%.

Now, we can use this probability (area) to find the standard deviation. We can use the stan-
dard normal distribution, whose mean and standard deviation we always know are µstd = 0
and σstd = 1 to find the z-value corresponding to an area of 89.35%. Using our calculator’s
invNorm(Area,µstd,σstd) function. The value of invNorm(0.8935,0,1)=1.24536. So this is
the z-value corresponding to the area of 89.35%.

Finally, we can use this z-value to compute the standard deviation of the original data set
of fish weights. To do that we use the formula from Section 6.21, “Standardizing Normal
Variables to Get z-values (z-scores)” and fill in the values we know for z, µ, and x.

z =
x− µ
σ

1.24536 =
815− 760

σ

σ =
55

1.24536
σ = 44.1639
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7 Calculus

Calculus is the study of rates of change and areas under a curve and how these two concepts are
closely related. Isaac Newton (in England) and Gottfried Liebniz (in Germany) invented this
area of mathematics independently around 1690 while each was trying to find a more effective
way to study the relationships between the distance traveled by the planets, the velocity at
which they travel, and their acceleration with respect to time.

7.1 Overview of Concepts for Differential Calculus

Newton and Liebniz used calculus to study rates of change. They did this by studying how the
position of a moving body differs from one moment to the next. The techniques they invented
became known as Differential Calculus, the study of instantaneous rates of change.

7.1.1 Rate of Change in Distance

Figure 110 shows one of the simplest examples of a rate of change from the world around you.
Every time you drive, or ride in a car, you see an odometer and a spedometer. The odometer
measures the current distance your car has driven (in kilometers), while the spedometer mea-
sures your car’s current speed (in kilometers per hour). Your car’s current speed is the rate at
which your distance traveled is changing per unit of time (in this case, hours).

Figure 110: Spedometer Shows Current Speed While Odometer Shows Current Distance6

These two measuring devices are intimately connected. Glancing at the spedometer’s current
reading of 154 km/h, you can predict the value the odometer will have one hour from now if you
continue at the current rate of speed: 28888 = 28734 + 154. This is true because right now the
odometer is showing 28734 and (at the current rate of speed) you will travel 154 kilometers in
the next one hour. After a second hour at this constant rate of 154 km/h, the spedometer will read
29042 as shown in the distance/time graph in Figure 111. In contrast, reading the odometer
before leaving and again after arriving, you can compute your average speed (in kilometers per
hour) by subtracting the initial distance reading from the final distance measurement and then
dividing by the total travel time.

Figure 111: Distance versus Time Graph

6Source: 123rf.com/photo 14194592 vector-illustration-of-a-speedometer.html
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Assuming a constant speed of 154 km/h, Figure 112 shows a graph of the speed versus time.
Since the speed is constant, the graph is a flat line that stays at the value 154 for three hours.

Figure 112: Graph of Constant Speed of 154 km/h over Time

In reality, your car’s speed is never constant. You speed up, slow down, and even can drive
in reverse (backwards). When going faster, you cover more distance in a given unit of time,
and when going slower, less distance. When driving backwards your distance traveled becomes
smaller than it was before.

Of course the concepts are not limited to a car. Imagine you take a walk to a park six kilometers
away from home with your new Apple Watch. It tells you your walking speed (in km/h) and
the distance in kilometers that you are away from home. Figure 113 shows a graph of your
distance from home versus the time you’ve walked. Notice that you got to the park after 1.48
hours and started walking back home, but after 4.147 hours you realize you left something at
the park so you turn around and walk back to the park again.

Figure 113: Distance versus Time Graph of Walk to Park with Apple Watch

If you would have walked at a constant speed (as in our 154 km/h car example graphed in
Figure 111 above) then the distance time graph would have been a straight line sloping upwards
until you got to the park then a straight line sloping downwards for your walk home. Instead,
this distance graph has a shape that is not straight. In the first half hour you cover almost 3.75
kilometers so you are walking quite fast, but then in the second half hour you slow down your
pace and only cover two kilometers. During the third half hour you must have been tired and
walking even more slowly since you only do a half a kilometer during that time.
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7.1.2 Derivative Gives Instantaneous Rate of Change Using Tangent Lines

Newton and Leibniz were interested in measuring the rate of change at any given instant of time,
when observing a body in motion. Their clever idea, when studying a graph of the distance
versus time, was to use the tangent line to the curve at a given point (t, f(t)) as the measure
of the rate of change of the distance at that very instant in time t. Figure 114 shows the
tangent lines at a number of points along the distance graph from Figure 113. The slope (or
“gradient”) of the tangent line represents the rate of change of your distance at that moment
in time. Tangent lines that are sloping upwards (going left to right) represent intervals of
time where the value of the function is increasing. The steeper the up-sloping line, the faster
the value is increasing at that moment. Tangent lines sloping downward (going left to right)
represent intervals of time where the value of the function is decreasing. The steeper the down-
sloping line, the faster the value is decreasing at that moment. Places where the slope of the
tangent is perfectly horizontal (slope = zero) represent a point at which the function might be
switching from increasing to decreasing (a local maximum value) or switching from decreasing
to increasing (a local minimum value).

Figure 114: Example Function with Tangent Lines

Notice in Figure 114 that the maximum distance away from home (when you got the park and
turned around) has a slope of zero (a horizontal line) at that point on the graph. Similarly when
you realized later you had to turn around and head back to the park, you were temporarily at
a minimum distance away from home compared to the time just before and just after that point.

The slope of the tangent at a given point in time is just a scalar number: positive numbers are
sloping upwards, zero is horizontal, and negative numbers are sloping downwards. If we plot
these different slope values as points (x, slope-of-f(x)) on the same axes for the same values of
x and “connect the dots”, we end up with Figure 115.
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Figure 115: Graphing the Derivative

We see that there is a pattern to the values that these slopes take on. If we call the original
distance versus time function f(t), then there appears to be a different smooth function that
passes through all of the dots that represent the values of the slopes of the tangents of the
original function f(x). We call this new function the “derivative of f(t)” and we write it using
the notation f ′(t). This derivative function f ′(t) provides a formula to compute the slope of
the tangent to f(t) at any value of t that we care to know it.

7.1.3 Relationships Between Function and Derivative

There are several interesting things to notice about the relationship between the function f(t)
and its derivative f ′(t). Perhaps the first thing we notice is shown in Figure 116, that the
maximum and minimum points of the original function f(t) correspond exactly to the “zeros”
of the derivative f ′(t). That is, where the derivative f ′(t) = 0. The derivative function f ′(t)
gives the slope of the tangent to f(t) at the value t, and at the values of t where f(t) has
minimums and maximums, the slope is zero, so this makes intuitive sense.

Figure 116: Minimum and Maximum of Original Function Occur Where Derivative Has Zeros

Another interesting observation shown in Figure 117 is that the intervals where the derivative
f ′(t)’s value is positive – that is, where its graph is above the x-axis – correspond exactly to
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the intervals where the original function f(t) is increasing. Likewise, we see that the intervals
where the derivative f ′(t)’s value is negative – that is, where its graph is below the x-axis –
correspond exactly to the intervals where the original function f(t) is decreasing.

Figure 117: Original Function Increases Where Derivative is Positive, Decreases Where Negative

If we shift our attention to the f ′(t) derivative function and consider the slopes of its tangent
lines in a number of places, we can plot the values of these slopes as we’ve done in Figure 118
to see that they also follow a pattern.

Figure 118: f ′′ Reveals Min/Max of f ′ and Concavity of f

Connecting the dots reveals that they lie along a straight line in this example. Since this is the
derivative function of f ′(t), we might rightly call this function (f ′)′(t), however we simplify the
notation and just write f ′′(t) instead. As we’d expect from above, we can observe that where the
line representing f ′′(t) falls below the x-axis (meaning its values are negative), the f ′(t) function
is decreasing and where this line falls above the x-axis (meaning its values are positive) the f ′(t)
function is increasing. However, notice something else. The interval where the f ′′(t) is negative,
also corresponds to where the original function f(t) is concave down. Similarly, the interval
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where the f ′′(t) is positive, also corresponds to where the original function f(t) is concave up.
What’s more, point where the line f ′′(t) cross the x-axis (i.e. where f ′′(t) = 0) corresponds
both to where f ′(t) has a minimum as well as to where the original function f switches from
being concave down to being concave up. This is known as a point of inflection of f .

7.1.4 Summary of Derivative Concepts

Given a function f(x), its (first) derivative f ′(x)...

• Is a related function that gives the slope of the tangent to the original f(x) at any point

• Has a negative value wherever f(x) is decreasing

• Has a positive value wherever f(x) is increasing

• Equals zero at values of x where f(x) has “critical points” like maxima (where sign of
slope switches from + to -) and minima (where sign of slope switches from - to +)

and its second derivative f ′′(x)...

• Is a related function that gives the concavity of f(x) at any point

• Has a negative value wherever f(x) is concave down

• Has a positive value wherever f(x) is concave up

• Equals zero at values of x where f(x) has potential “points of inflection” where concavity
changes from up to down or vice versa.

In particular, f ′′(x) is also the first derivative of f ′(x), so at the same time it...

• Gives slope of the tangent to the first derivative f ′(x) at any point

• Has a negative value wherever f ′(x) is decreasing

• Has a positive value wherever f ′(x) is increasing

• Equals zero at values of x where f ′(x) has “critical points” like maxima (where sign of
slope switches from + to -) and minima (where sign of slope switches from - to +)

7.2 Equations of Tangents and Normals

The tangent to f(x) at a point x = p is a line that goes through the point (p, f(p)) and which
has a slope equal to the derivative of f(x) at x = p. In other words, the slope of the tangent
line is f ′(p). Using the “point-slope” form of the equation of a line, this means that the tangent
has the equation:

y − f(p) = f ′(p)(x− p)

By multiplying out the f ′(p) into the binomial in parenthesis on the right hand side of the
equation, and adding f(p) to both sides, you can rewrite this tangent line in “slope-intercept”
form instead if the problem asks for that.

The normal to f(x) at a point x = p is the line that is perpendicular to the tangent to f(x) at
x = p. It also goes through the point (p, f(p)), but its slope is the negative reciprocal of the
slope of the tangent line. Therefore, in point-slope form, the equation of the normal line is:

y − f(p) = − 1

f ′(p)
(x− p)
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Again, you can multiply out the quantities on the right hand side and add f(p) to both sides
to rewrite this equation in slope-intercept form if the problem asks for that instead. Figure 119
shows both tangent and normal on the graph of f(x) at x = p.

Figure 119: Equations of Tangent and Normal to f(x) at x = p

7.3 Notation for Derivatives

If a function is named f(x), as we’ve seen above its first derivative is written using the notation

f ′(x). However, you will also see the notation
d f

dx
, the derivative of the function f with respect

to x. The second derivative is written either f ′′(x) or
d2 f

dx2
. For higher order derivative, when

you have taken the derivative of f a total of n times, you’ll see f (n)(x) or
dn f

dxn
.

If a function is written as y = f(x) then writing
dy

dx
is the same as f ′(x).

7.4 Graphing Derivatives with Your Calculator

Suppose you are given a problem with the function f(x) =
√

6x− x2 that forms the half-circle
from 0 to 6 depicted in Figure 120. You are asked to consider a point x along the x-axis that
defines a rectangle with two of its corners sitting on the half-circle. The area of the rectangle
A(x) is the length (6 − 2x) times the height

√
6x− x2. The problem asks to determine the

values of x where the rate of change of the area function A(x) is decreasing.

Figure 120: Formula for the Area of a Rectangle in a Half-Circle
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Recall that the “rate of change of A(x)” is one way to refer to the derivative A′(x) or d
dxA(x).

Without having to compute the derivative function A′(x) yourself, you can easily graph the
derivative of the function A(x) by using your calculator’s built-in derivative function, then you
can analyze the graph to see where it is positive, negative, and where it has zeros. The steps to
do this depend on whether you’re using a TI-Nspire CX calculator or the TI-84 Silver Edition.

7.4.1 Graphing Derivatives on the TI-Nspire CX

On the TI-Nspire CX, there is a d
dx operator in the palette of symbols that you can directly

enter as part of a function to graph. By putting the definition of function A(x) directly inside
the d

dx operator as shown in Figure 121, the graph produced is the graph of the derivative of
A(x), that is, of A′(x) without having to compute the derivative yourself by hand. Then, using
the normal “Analyze Graph” or “Trace” functions, you can study the graph of the derivative to
find where it is zero. This means that solving any kind of minimum/maximum or other problem
involving derivatives becomes very straightforward. Here we’ve used the Analyze Graph →Zeros
twice to find that that the derivative A′(x) equals zero at x = 0.879 and x = 5.12. By studying
the graph, we see that the values of the derivative are positive for x < 0.879 and for x > 5.12
while the values of the derivative are negative for 0.879 < x < 5.12. Therefore, the answer to
the question of where the function A(x) is decreasing is precisely between 0.879 < x < 5.12
where its derivative is negative.

Figure 121: Graph of Derivative of A(x) with Zeros Found Using Analyze Graph

If we were asked to find the maximum and minimum values of A(x) we would need to identify
which of the two zeros of A′(x) represents the minimum and which represents the maximum.
Looking at the graph, we see that the value of the derivative changes from positive (above
the x-axis) to negative (below the x-axis) at x = 0.879 and that at x = 5.12 the value of the
derivative changes from negative to positive. Therefore, the original function A(x) representing
the area of the rectangle must have a maximum at x = 0.859 and a minimum at x = 5.12.
To find the maximum value of the area itself, we just compute A(0.879) = 9 and to find the
minimum value of the area we compute A(5.12) = −9. In this particular problem, however, we
don’t want to allow x to get bigger than 3 because then there is no rectangle left to compute
the area of, so the only interesting point is the maximum area of 9 that occurs when x = 0.879.

7.4.2 Graphing Derivatives on the TI-84 Silver Edition

On the TI-84 Silver Edition, you use the nDeriv function to enter the derivative operator and
then enter the variable x in the d

d� symbol that appears, enter the equation whose derivative
you want to graph, and then enter a value of x = x in the specific point box at the end of the
formula as shown in Figure 122. Once graphed, you can use the analyze graph features as you
can with any other graph.
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Figure 122: Graphing a Derivative using nDeriv on TI-84 Silver Edition

For more information, see http://bit.ly/ib-sl-maths-graph-deriv-ti-84

7.5 Computing Derivatives at a Point with Your Calculator

Suppose you are given a function like f(x) =
sinx+ x2

ex + x3
and you are asked to find the equation

of the tangent line at x = 0.5. One step in finding the equation of the tangent is calculating
the derivative f ′(0.5) which gives the slope of the tangent line at x = 0.5. The other step is
finding the point (0.5, f(0.5)) through which the line passes where it is tangent to the curve
f(x) at that value of x. You can compute the value of the derivative of a function at a specific
point using your calculator without having to mechanically determine the derivative function
yourself. The steps to do this depend on whether you’re using a TI-Nspire CX calculator or the
TI-84 Silver Edition.

7.5.1 Computing Derivative at a Point on the TI-NSpire CX

On the TI-Nspire CX, in a calculator tab use the“Menu” button to pick the “Calculus →Numerical
Derivative at a Point” option. In the dialog box that appears, enter the variable your equation
will use in the Variable field (it defaults to x). In the Value field, enter the value of x for which
you want to compute the derivative. For example, given the problem above you would enter
the value 0.5 there. In the Derivative picklist, choose either the “1st Derivative” or the “2nd
Derivative” depending on which you want to compute. Before clicking OK the dialog will look
like what you see in Figure 123.

Figure 123: Computing a Derivative at a Specific Point (Step 1) on TI-Nspire CX

A template
d

dx
( ) |x=0.5 appears and you proceed to enter in the equation whose derivative you

want to calculate at x = 0.5 as shown in Figure 124. When you press “Enter” the calculator
displays the result of 0.502408.

Figure 124: Computing a Derivative at a Specific Point (Step 2) on TI-Nspire CX
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You then can use your calculator to compute f(0.5) by evaluating
sin 0.5 + 0.52

e0.5 + 0.53
= 0.41124.

With this information in hand, we now know the slope of the tangent line at x = 0.5 is 0.502408
and the line goes through the point (0.5, 0.41124), so using point-slope form, the equation of
the tangent (rounding to three significant figures) is:

y − 0.411 = 0.502(x− 0.500)

7.5.2 Computing Derivative at a Point on the TI-84 Silver Edition

To compute a derivative at a point on the TI-84 Silver Edition, use the nDeriv function.
For more information, see: http://bit.ly/ib-sl-maths-graph-deriv-ti-84

7.6 Rules for Computing Derivatives

It is amazing that there are simple rules to compute the derivative of all of the common functions
you work with in calculus. The formulas are in the formula booklet but for completeness we
recall them here.

7.6.1 Derivative of xn

To compute the derivative of x raised to any rational number power n ∈ Q, follow this rule:

f(x) = xn → f ′(x) = n · xn−1

You multiply by the current exponent and change the power on x to one less than its current
value. The following examples help clarify how this works in different situations:

Positive Whole Number Power Example

f(x) = x7 → f ′(x) = 7 · x7−1 = 7 · x6

Negative Whole Number Power Example

f(x) =
1

x7
= x−7 → f ′(x) = −7 · x−7−1 = −7 · x−8 =

7

x8

Positive Fractional Power Examples

f(x) =
√
x = x

1
2 → f ′(x) =

1

2
· x

1
2
−1 =

1

2
· x

1
2
− 2

2 =
1

2
· x−

1
2 =

1

2
· 1

x
1
2

=
1

2
√
x

f(x) =
√
x3 = x

3
2 → f ′(x) =

3

2
· x

3
2
−1 =

3

2
· x

3
2
− 2

2 =
3

2
· x

1
2 =

3

2

√
x

Negative Fractional Power Examples

f(x) =
1√
x

= x−
1
2 → f ′(x) = −1

2
· x−

1
2
−1 = −1

2
· x−

1
2
− 2

2 = −1

2
· x−

3
2 = −1

2
· 1

x
3
2

= − 1

2
√
x3

f(x) =
1√
x3

= x−
3
2 → f ′(x) = −3

2
· x−

3
2
−1 = −3

2
· x−

3
2
− 2

2 = −3

2
· x−

5
2 = −3

2

1

x
5
2

= − 3

2
√
x5
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7.6.2 Derivative of sinx

To compute the derivative of sinx, follow this rule:

f(x) = sin(x) → f ′(x) = cosx

7.6.3 Derivative of cosx

To compute the derivative of cosx, follow this rule:

f(x) = cos(x) → f ′(x) = − sinx

7.6.4 Derivative of tanx

To compute the derivative of tanx, follow this rule:

f(x) = tan(x) → f ′(x) =
1

cos2 x

7.6.5 Derivative of ex

To compute the derivative of ex, follow this rule:

f(x) = ex → f ′(x) = ex

7.6.6 Derivative of lnx

To compute the derivative of lnx, follow this rule:

f(x) = lnx → f ′(x) =
1

x

7.7 Differentiating a Scalar Multiple

When a function is a scalar multiple of another function, you compute its derivative by taking
the same scalar multiple of the derivative of that function. Said another way, “The derivative
of a scalar multiple of a function is the scalar multiple of the derivative.” The scalar constant
just goes along for the ride as you take the derivative of the function with which it is multiplied.

f(x) = k · u(x) → f ′(x) = k · u′(x)

Example

f(x) = 16x7 → f ′(x) = 16 · 7 · x6 = 112x6

7.8 Differentiating a Sum or Difference

When a function is comprised of multiple terms that are added or subtracted, you compute its
derivative by taking the derivative of each term and combining the results. Said another way,
“The derivative of a sum/difference is the sum/difference of the derivatives.”

f(x) = u(x) + v(x) → f ′(x) = u′(x) + v′(x)

f(x) = u(x)− v(x) → f ′(x) = u′(x)− v′(x)
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Example

f(x) = 16x7 + 5 sinx+ 2 lnx → f ′(x) = 16 · 7 · x6 + 5 cosx+ 2 · 1

x
= 112x6 + 5 cosx+

2

x

7.9 Example Using Derivation Rules

Let f(x) = px3 + px2 + qx. Find f ′(x), and then given that f ′(x) ≥ 0 show that p2 ≤ 3pq.
Using the rules from the preceding sections about xn, scalar multiples, and sums, we have:

f(x) = px3 + px2 + qx

f ′(x) = 3 · px2 + 2 · px+ q

= 3p x2 + 2p x+ q

We see that f ′(x) is a quadratic equation, and therefore its graph is a parabola. We’re told
that f ′(x) ≥ 0, so this parabola must be completely above the x-axis, or at best have its vertex
touching the x-axis. Said another way, it means that the parabola might have no real roots (if
it never touches the x-axis) or at most one real root (if it touches the x-axis with its vertex.
Recall from Section 2.16.5, “Using the Discriminant to Find the Number of Zeros”, that if a
quadratic function has no roots, then its discriminant is less than zero, and that if it has a
single root (also known as two equal roots), then its discriminant equals zero. Therefore, the
fact that our quadratic equation f ′(x) ≥ 0 implies that its discriminant is less than or equal to
zero. The discriminant of f ′(x) is (2p)2 − 4 · (3p) · q, so we have:

(2p)2 − 4 · (3p) · q ≤ 0

4p2 − 12pq ≤ 0

4
(
p2 − 3pq

)
≤ 0

p2 − 3pq ≤ 0

p2 ≤ 3pq

7.10 “Chain Rule”: Differentiating Composed Functions

The rules for calculating derivatives are meant to be applied to simple functions of x. When
you encounter more complicated functions, you can always think of them as compositions of
two simpler functions. Recall from Section 2.9, “Composing One Function with Another” that
a composed function “chains” together the output of one function to the input of the next. This
rule is know as the Chain Rule because when computing the derivative of a composition, you
must also “chain” together the derivative of the outer function with the derivative of the inner
function using multiplication.

f(x) = u(v(x)) → f ′(x) = u′(v(x)) · v′(x) or alternatively written
du

dv
· dv
dx

You cannot accidentally use the chain rule in a situation where it is not required. If you adopt
the convention of always doing the chain rule, at the very worst the derivative of the inner
function will be equal to one (1) so multiplying by that value of one will not “harm” anything.
For example, if you have the function f(x) = x7 if you do the derivative to get 7x6 and then
multiply by the derivative of x (the thing being raised to the seventh power), you will still get
the correct answer because the derivative of x is 1. Over time you will realize that you only
need to use the chain rule when the inner function is something more “complicated” than a
simple x, but in the meantime it doesn’t hurt to always use it.
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Example 1 Consider the function:

f(x) = 16(x2 + 5x+ 2)7

This looks like a simpler function u(x) = 16x7 composed with another function v(x) = x2 +
5x+ 2. If we make these substitutions, then we can rewrite f(x) as:

f(x) = u(v(x))

When we take the derivative of a composite function like this, we first take the derivative of
the outer function (keeping the inner function in place as it is), then multiply that result by
the derivative of the inner function with which it is composed. To calculate the derivative of
the outer function u(x), with respect to the inner function v(x) we follow the derivative rules
for the simple functions, but keep the composed function v(x) inside intact. Then we multiply
this result by the derivative of the inner function with respect to x. For example:

f(x) = 16(x2 + 5x+ 2)7 = 16(v(x))7 →
f ′(x) = 16 · 7(v(x))6 · v′(x)

= 112(v(x))6 · (2x+ 5)

= 112(x2 + 5x+ 2)6 · (2x+ 5)

Example 2 Consider the function:

f(x) = 6 sin
(
2ex + 3x3

)
If we let u(x) = 6 sinx and v(x) = 2ex + 3x3, then we can rewrite f(x) = u(v(x)). As before,
we have:

f(x) = 6 sin
(
2ex + 3x3

)
= 6 sin (v(x)) →

f ′(x) = 6 cos (v(x)) · v′(x)

= 6 cos (v(x)) ·
(
2ex + 3 · 3x2

)
= 6 cos

(
2ex + 3x3

)
·
(
2ex + 3 · 3x2

)
= 6 cos

(
2ex + 3x3

)
·
(
2ex + 9x2

)
Example 3 Consider the function:

f(x) = 4e3x
2+2x

If we let u(x) = 4ex and v(x) = 3x2 + 2x, then we can rewrite f(x) = u(v(x)). As before, we
have:

f(x) = 4e3x
2+2x = 4ev(x) →

f ′(x) = 4ev(x) · v′(x)

= 4ev(x) · (3 · 2x+ 2)

= 4e3x
2+2x · (6x+ 2)

Example 4 Sometimes you may have to apply the Chain Rule more than one time if the inner
function is itself a composition of other functions. Consider the function:

f(x) =
√

2e3 sinx
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Start by letting u(x) =
√
x = x

1
2 and v(x) = 2e3 sinx, then we can rewrite f(x) = u(v(x)). As

before, we have:

f(x) =
√

2e3 sinx =
(
2e3 sinx

) 1
2 →

f ′(x) =
1

2
(v(x))−

1
2 · v′(x)

At this point, when we need to find v′(x), we realize that the v(x) is really a composite of a
simpler function w(x) = 2ex and z(x) = 3 sinx. So we can rewrite v(x) = w(z(z)) and find
v′(x):

v(x) = 2e3 sinx = 2ez(x) →
v′(x) = 2ez(x) · z′(x)

= 2ez(x) · 3 cosx

= 2e3 sinx · 3 cosx = 6e3 sinx cosx

Substituting this answer for v′(x) back into our partial result from before, we end up with the
final answer:

f(x) =
√

2e3 sinx =
(
2e3 sinx

) 1
2 →

f ′(x) =
1

2
(v(x))−

1
2 · v′(x)

=
1

2
(v(x))−

1
2 · 6e3 sinx cosx

=
1

2
√

2e3 sinx
· 6e3 sinx cosx

=
3e3 sinx cosx√

2e3 sinx

7.11 “Product Rule”: Differentiating Product of Functions

You use the product rule to compute the derivative of a function f(x) that is the product of
two other functions.

f(x) = u(x) · v(x) → f ′(x) = u(x) · v′(x) + v(x) · u′(x)

= u(x) · dv
dx

+ v(x) · du
dx

In other words, the derivative of the product of two functions is “the first times the derivative
of the second, plus the second times the derivative of the first”.

Given a function f(x) = 5x2, if rather than recognizing this as a constant 5 times the function
x2, suppose you accidentally employ the product rule by letting u(x) = 5 and v(x) = x2. Rest
easy, because even if you do this you won’t get the wrong answer. Things still work out in the
end because...

u(x) = 5 v(x) = x2

du

dx
= 0

dv

dx
= 2x
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Then when you combine these elements using the “recipe” given by the product rule, you get:

f ′(x) = u(x) · dv
dx

+ v(x) · du
dx

= 5 · 2x+ x2 · 0
= 10x

This is the same answer you would have gotten had you realized that the 5 was just a constant
that went “along for the ride” as you took the derivative of x2. Therefore, the general rule is
that you apply the product rule only when the two separate functions that you can identify are
being multiplied each contains a variable x, rather than just being a constant.

When calculating the derivative of the first function or of the second function, if it is a com-
posed function then you will also need to employ the chain rule as illustrated by the following
examples.

Example 1 Consider the function:

f(x) = ln (3x) e−0.2x
2

Start by identifying the two functions being multiplied together, then calculate their derivatives
on their own before combining them using the “recipe” indicated by the product rule:

u(x) = ln (3x) v(x) = e−0.2x
2

du

dx
=

1

3x
· 3 =

1

x

dv

dx
= e−0.2x

2 · (−0.2 · 2 · x) = −0.4xe−0.2x
2

Notice above that while computing the derivatives du
dx and dv

dx that we used the Chain Rule.
Finally assemble the answer by substituting the partial answers above into the formula for the
product rule:

f ′(x) = u(x) · dv
dx

+ v(x) · du
dx

= ln (3x) ·
(
−0.4xe−0.2x

2
)

+ e−0.2x
2 1

x

= −0.4x ln (3x) e−0.2x
2

+
e−0.2x

2

x

=
e−0.2x

2 (
1− 0.4x2 ln (3x)

)
x

Example 2 Consider the function:

f(x) = sin (2x) e3x

Start by identifying the two functions being multiplied together, then calculate their derivatives
on their own before combining them using the “recipe” indicated by the product rule:

u(x) = sin (2x) v(x) = e3x

du

dx
= cos (2x) · 2 = 2 cos (2x)

dv

dx
= e3x · 3 = 3e3x

Notice above that while computing the derivatives du
dx and dv

dx that we used the Chain Rule.
Finally assemble the answer by substituting the partial answers above into the formula for the
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product rule:

f ′(x) = u(x) · dv
dx

+ v(x) · du
dx

= sin (2x) · 3e3x + e3x · 2 cos (2x)

= e3x (3 sin (2x) + 2 cos (2x))

Example 3 Consider the function:

f(x) =
(
8x3 − 6x

)4
(2x+ 1)3

Start by identifying the two functions being multiplied together, then calculate their derivatives
on their own before combining them using the “recipe” indicated by the product rule:

u(x) =
(
8x3 − 6x

)4
v(x) = (2x+ 1)3

du

dx
= 4 ·

(
8x3 − 6x

)3 · (8 · 3x2 − 6
) dv

dx
= 3 · (2x+ 1)2 · (2)

= 4 ·
(
8x3 − 6x

)3 · (24x2 − 6
)

= 6 (2x+ 1)2

= 4 ·
(
8x3 − 6x

)3 · 6 · (4x2 − 1
)

= 24
(
8x3 − 6x

)3 (
4x2 − 1

)
Notice above that while computing the derivatives du

dx and dv
dx that we used the Chain Rule.

Finally assemble the answer by substituting the partial answers above into the formula for the
product rule:

f ′(x) = u(x) · dv
dx

+ v(x) · du
dx

=
(
8x3 − 6x

)4 · 6 (2x+ 1)2 + (2x+ 1)3 · 24
(
8x3 − 6x

)3 (
4x2 − 1

)
=
(
8x3 − 6x

)3
(2x+ 1)2

(
6
(
8x3 − 6x

)
+ 24 (2x+ 1)

(
4x2 − 1

))
= 6

(
8x3 − 6x

)3
(2x+ 1)2

((
8x3 − 6x

)
+ 4 (2x+ 1)

(
4x2 − 1

))
= 6

(
8x3 − 6x

)3
(2x+ 1)2

((
8x3 − 6x

)
+ 32x3 − 8x+ 16x2 − 4

)
= 6

(
8x3 − 6x

)3
(2x+ 1)2

(
40x3 + 16x2 − 14x− 4

)
= 12

(
8x3 − 6x

)3
(2x+ 1)2

(
20x3 + 8x2 − 7x− 2

)
Example 4 Consider the function:

f(x) = e3x
2

sin

(
1

x2

)
Start by identifying the two functions being multiplied together, then calculate their derivatives
on their own before combining them using the “recipe” indicated by the product rule:

u(x) = e3x
2

v(x) = sin

(
1

x2

)
du

dx
= e3x

2 · (6x)
dv

dx
= cos

(
1

x2

)
·
(
−2

x3

)
Notice above that while computing the derivatives du

dx and dv
dx that we used the Chain Rule.

Finally assemble the answer by substituting the partial answers above into the formula for the
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product rule:

f ′(x) = u(x) · dv
dx

+ v(x) · du
dx

= e3x
2 · cos

(
1

x2

)
·
(
−2

x3

)
+ sin

(
1

x2

)
· e3x2 · (6x)

= e3x
2

(
−2

x3
cos

(
1

x2

)
+ 6x sin

(
1

x2

))
7.12 “Quotient Rule”: Differentiating Quotient of Functions

You use the quotient rule to compute the derivative of a function f(x) that is the quotient of
two other functions.

f(x) =
u(x)

v(x)
→ f ′(x) =

v(x) · u′(x)− u(x) · v′(x)

(v(x))2

=
v(x) · dudx − u(x) · dvdx

(v(x))2

When I was in high school, we weren’t allowed to use a formula booklet that reminded us of
the important, essential formulas. A math teacher in high school taught me the following silly
way to remember the quotient rule that harkens back to the Disney movie Snow White and the
Seven Dwarves and its song “Hi Ho, Hi Ho, It’s off work we go”. If you think of the quotient
as having a “Hi” part (the high part, the numerator) and a lower part called “Ho”, then you
can remember the quotient rule using the phrase “Ho-dee-hi minus Hi-dee-ho over Ho Ho”:

f(x) =
hi

ho
→ f ′(x) =

ho d(hi)− hi d(ho)

ho · ho

Given f(x) =
5

x2
, if rather than recognizing this as a constant 5 times the function

1

x2
, suppose

that you accidentally employ the quotient rule by letting u(x) = 5 and v(x) =
1

x2
.

Rest easy, because even if you do this you won’t get the wrong answer. Things still work
out in the end because...

u(x) = 5 v(x) = x2

du

dx
= 0

dv

dx
= 2x

Then when you combine these elements using the “recipe” given by the quotient rule, you get:

f ′(x) =
v(x) · dudx − u(x) · dvdx

(v(x))2

=
x2 · 0− 5 · 2x

(x2)2

=
−10x

x4
=
−10

x3

Which is the same answer you would have gotten had you realized that the 5 was just a constant

that went “along for the ride” as you took the derivative of 5 · 1

x2
.

Therefore, the general rule is that you apply the quotient rule only when the two separate
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functions that you can identify are being divided each contains a variable x, rather than just
being a constant.

When calculating the derivative of the first function or of the second function, if it is a com-
posed function then you will also need to employ the chain rule as illustrated by the following
examples.

Example 1 Consider the function:

f(x) =
ex

2x

Start by identifying the functions in the numerator and denominator, then calculate their deriva-
tives on their own before combining them using the “recipe” indicated by the quotient rule:

u(x) = e2x v(x) = 2x

du

dx
= e2x · 2 = 2e2x

dv

dx
= 2

Notice above that while computing one the derivatives du
dx and dv

dx that we used the Chain Rule.
Finally assemble the answer by substituting the partial answers above into the formula for the
product rule:

f ′(x) =
v(x) · dudx − u(x) · dvdx

(v(x))2

=
2x · 2e2x − e2x · 2

(2x)2

=
2e2x (2x− 1)

4x2

=
e2x (2x− 1)

2x2

Example 2 Consider the function:

f(x) =
2x3 + 1

x2 + 1

Start by identifying the functions in the numerator and denominator, then calculate their deriva-
tives on their own before combining them using the “recipe” indicated by the quotient rule:

u(x) = 2x3 + 1 v(x) = x2 + 1

du

dx
= 2 · 3x2 = 6x2

dv

dx
= 2x

Notice above that while computing one the derivatives du
dx and dv

dx that we used the Chain Rule.
Finally assemble the answer by substituting the partial answers above into the formula for the
product rule:

f ′(x) =
v(x) · dudx − u(x) · dvdx

(v(x))2

=

(
x2 + 1

)
· 6x2 −

(
2x3 + 1

)
· 2x

(x2 + 1)2

=
6x2

(
x2 + 1

)
− 2x

(
2x3 + 1

)
(x2 + 1)2
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Example 3 Consider the function:

f(x) =
e3x

ln (x2 − x)

Start by identifying the functions in the numerator and denominator, then calculate their deriva-
tives on their own before combining them using the “recipe” indicated by the quotient rule:

u(x) = e3x v(x) = ln
(
x2 − x

)
du

dx
= e3x · 3 = 3e3x

dv

dx
=

1

(x2 − x)
· (2x− 1) =

2x− 1

x2 − x

Notice above that while computing the derivatives du
dx and dv

dx that we used the Chain Rule.
Finally assemble the answer by substituting the partial answers above into the formula for the
quotient rule:

f ′(x) =
v(x) · dudx − u(x) · dvdx

(v(x))2

=
ln
(
x2 − x

)
· 3e3x − e3x · 2x−1

x2−x

(ln (x2 − x))2

=
e3x
(
3
(
x2 − x

)
ln
(
x2 − x

)
− (2x− 1)

)
(ln (x2 − x))2 (x2 − x)

7.13 Using the First Derivative to Find Local Maxima and Minima

The first derivative of a function f provides information on its instantaneous rate of change
at any point x as measured by the slope of the line tangent to the curve f(x) at any point
(x, f(x)). The function f is increasing wherever f ′(x) has a positive value and is decreasing
wherever f ′(x) has a negative value. The function f has a critical point at x = p if f ′(p) = 0.
You can use the sign of the derivative just to the left or right of x = p to determine whether the
point is a minimum, a maximum, or neither of these. If the sign of the first derivative changes
from positive to negative at x = p, then the point (p, f(p)) is a maximum. If the sign of the first
derivative changes from negative to positive at x = p, then the point (p, f(p)) is a minimum. If
the sign does not change, then the point is neither a minimum nor a maximum. As mentioned
in the previous section, the second derivative can also be used to test whether a critical point
is a minimum or maximum.

If the point (p, f(p)) is a “local minimum” then its y-coordinate f(p) is the smallest value
of the function f when compared to those function values for points in the vicinity of x = p. It
may not necessarily be the absolute minimum value of the function. Analogously, if the point
(p, f(p)) is a “local maximum” then its y-coordinate f(p) is the largest value of the function
f when compared to those function values for points in the vicinity of x = p. It may not
necessarily be the absolute maximum value of the function. When the domain of a function is
limited by the problem, remember to also check the function values at the domain interval’s
endpoints for possible values of local or absolute maxima or minima.

Your calculator can help you find local maxima and minima. If you have graphed the function
f , see section Section 2.14.4, “Finding a Maximum Value in an Interval” for how to analyze the
graph to maximum points and section Section 2.14.5, “Finding a Minimum Value Value in an
Interval” for how to find minimum points.

For additional information, see Section 7.1.3, “Relationships Between Function and Deriva-
tive”.
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7.14 Analyzing Zeros of Derivative Graph to Find Maxima and Minima

Consider the function f(x) = x2 and the point (2, 1). Let the point (x, x2) be an arbitrary point
on the curve f(x), find the minimum distance between the point and the curve.

Start by drawing a figure like the one in Figure 125 to visualize the distance between the
given point and the curve, and to derive a formula for the distance in terms of x. The distance
between an arbitrary point (x, x2) on the curve f(x) and the point (2, 1) is the length of the
hypotenuse of a right triangle where the horizontal leg has length x − 2 and the vertical leg
has length x2 − 1. These ”leg” lengths are just the difference between the x-coordinates of the
points (x, x2) and (2, 1) as well as the difference between their y-coordinates.

Figure 125: Sketching the Distance Between Point and Curve

Using the Pythagorean Theorem, we know that the length of the hypotenuse must be the square
root of the sum of the squares of the leg distances, so this gives the expression for the distance
between the point and the curve, for any value of x. We can call this distance-between-point-
and-curve function D(x):

D(x) =

√
(x2 − 1)2 + (x− 2)2

We know that the minimum value of D(x) must occur where its first derivative d
dxD(x) equals

zero. If we can use our calculator, the job is almost done. Figure 126 shows using the technique
described in Section 7.4, “Graphing Derivatives with Your Calculator” to graph d

dxD(x).

Figure 126: Finding Zeros of Derivative of D(x) to Find Minimum of D(x)

Once we’ve graphed the derivative, we can use the “Analyze Graph” →“Zeros” feature of the
calculator to find the zero shown in the figure at x = 1.17. We know the point is a minimum
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because we can see in the graph that the derivative value is below the x-axis before this zero
and above the x-axis after this zero. That means that the gradient values of the function D(x)
are changing at x = 1.17 from negative to positive.

If the problem had asked “At what value of x is the distance between the curve f(x) and
the point (2, 1) at its minimum?” then x = 1.17 would have been the answer. However, pay
attention that the problem has asked for the minimum value of the distance. Therefore, we
need to compute the value of the distance function D(x) at this point:

D(1.17) =

√
(1.172 − 1)2 + (1.17− 2)2 = 0.908

7.15 Using the Second Derivative to Determine Concavity and Points of Inflection

The second derivative of a function f provides information on its concavity. You compute a
function’s second derivative by computing its first derivative f ′, then repeating the process to
compute the derivative of f ′. The function f is concave down wherever f ′′(x) has a negative
value and is concave up wherever f ′′(x) has a positive value. When evaluating a critical point
at x = p where the first derivative f ′(p) = 0, you can evaluate the second derivative f ′′(p) to
determine whether the point (p, f(p)) is a minimum or a maximum. If f ′′(p) < 0 then f is
concave down there, so (p, f(p)) must be a maximum. If f ′′(p) > 0 then f is concave up there,
so (p, f(p)) must be a minimum.

A point of inflection of the function f is a point (p, f(p)) where the function f changes concavity.
You can determine the points of inflection by first finding where f ′′(x) = 0 and then for each
of these points finding the sign of values of f ′′(x) for values of x just to the left and just to the
right of the candidate point of inflection. If the sign of f ′′(x) changes from positive to negative
around the point x = p, or changes from negative to positive there, then the point (p, f(p)) is
a point of inflection. If the sign remains positive or remains negative across a candidate point
of inflection, then it does not qualify. Another even easier way to find a point of inflection
is to graph the second derivative function, and analyze the graph to find its zeros. You can
visually see where the values of the function are positive (above the x-axis) and negative (below
the x-axis) to help you determine if the sign of the second derivative is changing at the points
around where the second derivative equals zero (that is, crosses the x-axis). See Section 7.4,
“Graphing Derivatives with Your Calculator” for more information.

Your calculator can compute the second derivative at a particular point x = p for you. Just
follow the steps outlined in Section 7.5, “Computing Derivatives at a Point with Your Calcula-
tor” but instead choose “2nd Derivative” instead of “1st Derivative”.

For additional information, see Section 7.1.3, “Relationships Between Function and Deriva-
tive”.

7.16 Overview of Concepts for Integral Calculus

Newton and Liebniz used calculus to study areas under curves. They did this by studying how
to approximate the area of an arbitrary shape by dividing the area into smaller and smaller
rectangles. The techniques they invented became known as Integral Calculus, the study of areas
under curves. In the process, they proved an amazing link that they named the “Fundamental
Theorem of Calculus” between the Differential Calculus described in the previous section and
the area under a curve covered in this section.
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7.16.1 Area Under Curve

To estimate the area under an arbitrary curve f(x) between points x = a and x = b, Newton
and Liebniz started by dividing the interval (a, b) into a number of equal segments. At each
segment boundary they drew a vertical segment up to intersect the curve f(x) and used this as
the height of a rectangle. Figure 127 shows the result when using a small number of segments.
By adding together the areas of all the rectangles, they achieved a rough approximation of the
area under the curve. As you can see in the figure, sometimes the rectangle undershoots the
actual area, and in other places overshoots the real area.

Figure 127: Estimating the Area Under the Curve Using Rectangles

Figure 128 shows how their approximation improved by dividing the interval into a larger
number of equal segments, each having a smaller width.

Figure 128: Estimating the Area Under the Curve Using Smaller Rectangles

Figure 129 shows how their approximation improved even further by allowing the number of
segments to increase, thus shrinking even further the width of the equal intervals. They saw
that adding together this larger number of ever-narrower rectangles would eventually converge
on the actual area under the curve if they allowed the width of the rectangles to approach zero.

Figure 129: Estimating the Area Under the Curve Using Even Smaller Rectangles

The process of integration formalizes the calculation of the exact area under a curve. The nota-
tion Newton and Liebniz invented looks like a stylized letter “S” for sum, since the calculation
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of the area involves summing up the areas of the infinitely many, infinitesimally-thin rectangles
whose heights are given by the value of the function f(x) being integrated. The area under the
curve f(x) from x = a to x = b is written using the notation below. As the value x ranges
from x = a to x = b, the height of the rectangle at any given point is given by f(x) and the
infinitesimally-thin width of the rectangle is represented by the dx, where the d stands for the
“delta” or very small change in the value of x.∫ x=b

x=a
(rectangle height)× (rectangle width) =

∫ b

a
f(x) dx

7.16.2 Relationship Between Derivation and Integration

While studying how the graph of an object’s “distance versus time” related to its graph of “speed
versus time”, Newton and Liebniz proved a surprising connection between the two. The area
under the speed graph between two moments in time tstart and tend was equal to the distance
traveled during that interval. Figure 130 shows this effect for a three-hour car journey at a
constant speed of 154 km/h. The graph on the left is a distance versus time graph. It shows
that we began the journey with our odometer showing 28734 kilometers. After three hours
the odometer measuring our distance traveled showed 29196. Subtracting our starting distance
from our ending distance yields a total distance traveled of 29196 − 28734 = 462 kilometers.
The graph on the right is a speed versus time graph. It is a straight, flat line because our speed
– the rate of change in our distance per hour – was constant at 154 km/h for three hours. If we
multiply the number of hours traveled by the speed, we get 154 km/h × 3 hours = 462 km. The
calculation is none other than the (in this case, rectangular) area under the graph of the speed
for the duration of time we traveled.

Figure 130: Area Under the “Speed versus Time” Graph Gives Distance Traveled

Since the speed is the rate of change in distance, and the rate of change function is the derivative,
we can state this relationship in another way. Newton and Liebniz proved that the area under
the graph of the derivative was equal to the difference in the original function when evaluated
at the start and end of the interval they were observing. They named this important result the
“Fundamental Theorem of Calculus”. Figure 131 shows a more general representation of this
essential link between differential calculus (the derivative) and integral calculus (the area under
a curve). The shaded area between the graph of the derivative function f ′(x) and the x-axis
over the interval (a, b) is exactly equal to the (vertical) difference between f(b)− f(a). This is
true for any continuous function f(x).
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Figure 131: Area Under Derivative Curve Equals the Change in the Original Function

Figure 132 shows an alternative way to think about this important result. If we are given a
function f(x) and want to calculate the area under f(x) from x = a to x = b, all we have to do
is find a new function F (x) such that F ′(x) (its derivative) equals our original function f(x).

The Fundamental Theorem of Calculus tells us that

∫ b

a
F ′(x) dx = F (b)− F (a), that the area

under the curve of F ′(x) from x = a to x = b is exactly equal to the difference between the
values of the original function at x = b and x = a. However, since we found the function F (x)

precisely so that F ′(x) is exactly our original function f(x), we have

∫ b

a
f(x) dx = F (b)−F (a).

We call this function F (x) the anti-derivative of f(x).

Figure 132: Area Under Curve Equals the Change in its Antiderivative Function

7.17 Anti-Differentiation to Compute Integrals

The process of finding a function F (x) whose derivative is a given function f(x) that you start
with is called “anti-differentiation”. It’s like running the rules of differentiation in reverse. Given
any function f(x), if we can find its “anti-derivative”, then we can find the area under the curve
of f(x) between x = a and x = b simply by computing F (b) − F (a) using this anti-derivative
function. Therefore, finding the antiderivative is intimately related to computing an integral to
find the area under a curve.

For example, consider the function f(x) = x2. In order to compute the area under this curve
from x = 5 to x = 10, we need to find a function F (x) such that F ′(x) = x2, in other words,
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a function F (x) whose derivative equals our original f(x). If we let F (x) = x3

3 we can take

the derivative F ′(x) and see that it comes out to 3 · x23 = x2. So choosing F (x) = x3

3 fits our
purposes to be able to compute the area under the original f(x) from x = 5 to x = 10:∫ 10

5
x2 dx =

[
F (x)

]10
5

= F (10)− F (5) =
103

3
− 53

3
=

1000− 125

3
=

875

3
≈ 291.67

7.17.1 Indefinite Integration as Anti-Differentiation

An integral with specific boundary conditions from x = a to x = b represents the area under
the curve f(x) from x = a to x = b. ∫ b

a
f(x) dx

However, if you omit the boundary conditions, then this represents the anti-derivative:∫
f(x) dx = F (x)

When computing the anti-derivative, there will always be infinitely-many possible answers. For
example, consider again the function f(x) = x2. What if we chose the function F (x) = x3

3 + 1
for the antiderivative? If we compute its derivative we get F ′(x) = x2 which is the original f(x)

function we started with. So, above we used F (x) = x3

3 and here we see that another function

F (x) = x3

3 + 1 also satisfies the conditions to be the antiderivative of f(x). In fact, so does

F (x) = x3

3 + 2, since it also has x2 as its derivative. It should be clear that we could add any

constant C to the function x3

3 and when performing the derivative, that constant becomes zero
and disappears.

This is why when writing the anti-derivative, we always write a solution that includes a “+ C”
at the end, which we call the “constant of integration”. For our function f(x) = x2, we’ll write
its anti-derivative as: ∫

x2 dx =
x3

3
+ C

Where that C represents any of infinitely many possible constant values that could be used.
On any given problem, as we’ll see in section Section 7.22, “Using Additional Information to
Determine Constant of Integration”, if some additional information is provided, then we can
deduce the exact constant value for a particular set of problem conditions.

7.18 Rules for Computing the Indefinite Integral (Antiderivative)

Anti-derivation is running the rules of derivatives in reverse. Therefore, it makes sense that for
a given function f(x), you can follow a rule to find the new function F (x) which has f(x) as its
derivative. When computing an integral involving f(x), the first step is finding the antideriva-
tive function F (x) using these rules. Then, if boundary conditions are given, you evaluate the
antiderivative function at the two boundaries of integration to compute their difference to find
the area under the original curve. If no boundary conditions are provided, then you stop after
determining the anti-derivative function, after making sure you added the “constant of integra-
tion” (C).
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When boundary conditions are provided, we call that a definite integral. We definitely know
the interval over which to compute the area. In contrast, when no boundary conditions are pro-
vided, it is an indefinite integral. We do not know the specific interval over which to compute
the area, but in any event we have found an interesting piece of information: the anti-derivative
function F (x) determined can be used to find the area over any subsequent interval (a, b) we
might be given by computing F (b)− F (a).

7.18.1 Indefinite Integral of xn (n ∈ Q)

To compute the indefinite integral (anti-derivative) of x raised to any rational number power,
follow this rule:

f(x) = xn → F (x) =
xn+1

n+ 1
+ C

You change the power on x to one greater than its current value, then divide by the value of
this new exponent. The following examples help clarify how this works in different situations:

Positive Whole Number Power Example

f(x) = x7 → F (x) =
x8

8
+ C

Negative Whole Number Power Example

f(x) =
1

x7
= x−7 → F (x) =

x−7+1

−7 + 1
=
x−6

−6
= − 1

6x6
+ C

Positive Fractional Power Examples

f(x) =
√
x = x

1
2 → F (x) =

x
1
2
+1

1
2 + 1

=
x

3
2

3
2

=
2

3
x

3
2 =

2

3

√
x3 + C

f(x) =
√
x3 = x

3
2 → F (x) =

x
3
2
+1

3
2 + 1

=
x

5
2

5
2

=
2

5
x

5
2 =

2

5

√
x5 + C

Negative Fractional Power Examples

f(x) =
1√
x

= x−
1
2 → F (x) =

x−
1
2
+1

−1
2 + 1

=
x

1
2

1
2

= 2
√
x+ C

f(x) =
1√
x3

= x−
3
2 → F (x) =

x−
3
2
+1

−3
2 + 1

=
x−

1
2

−1
2

= − 2√
x

+ C

7.18.2 Indefinite Integral of sinx

To compute the indefinite integral (anti-derivative) of sinx, follow this rule:

f(x) = sin(x) → F (x) = − cosx+ C
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7.18.3 Indefinite Integral of cosx

To compute the indefinite integral (anti-derivative) of cosx, follow this rule:

f(x) = cos(x) → F (x) = sinx+ C

7.18.4 Indefinite Integral of 1
x

To compute the indefinite integral (anti-derivative) of 1
x , follow this rule:

f(x) =
1

x
→ F (x) = lnx+ C

7.18.5 Indefinite Integral of ex

To compute the indefinite integral (anti-derivative) of ex, follow this rule:

f(x) = ex → F (x) = ex + C

7.19 Integrating Constant Multiple of a Function

The integral of a constant k times a function f(x) is equal to k times the integral:∫
k · f(x) dx = k ·

∫
f(x) dx

In simple terms, this rule means that you can “move a constant outside the integral” without
changing the answer. This should make intuitive sense, because it’s like “factoring out” a com-
mon factor k from the height of each rectangle the integral is adding together.

Remember that integrating is adding up the areas of infinitely many, infinitesimally-thin rect-
angles whose height is given by the function f(x). Imagine taking only five of these rectangles
as an approximation with heights given by the function f(x) at five points x1, x2, x3, x4, and x5.
The sum of the areas of these five rectangles would be the expression below, adding together
the width × height calculation of all five.∫

kf(x) dx ≈ kf(x1) dx+ kf(x2) dx+ kf(x3) dx+ kf(x4) dx+ kf(x5) dx

However, we see there is a constant k in every term that we can factor out, so we can write:∫
kf(x) dx ≈ kf(x1) dx+ kf(x2) dx+ kf(x3) dx+ kf(x4) dx+ kf(x5) dx

≈ k
(
f(x1) dx+ f(x2) dx+ f(x3) dx+ f(x4) dx+ f(x5) dx

)
The remaining expression inside the parenthesis is the sum of the five rectangles without the
constant k factor. That is just the integral of f(x):∫

kf(x) dx ≈ k
(
f(x1) dx+ f(x2) dx+ f(x3) dx+ f(x4) dx+ f(x5) dx

)
≈ k

∫
f(x) dx

So, we can see that this would also make sense if there were 1000, or a million, or infinitely
many rectangles. If the height of each rectangle has a common factor k, we can factor that
outside the sum represented by the integral and multiply the factor k later after taking the sum
of heights of the rectangles without that multiplier.
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7.20 Integrating Sums and Differences of Functions

The integral of a sum or difference of functions is the sum or difference of the integrals:

∫
(f(x) + g(x)) dx =

∫
f(x) dx+

∫
f(x) dx∫

(f(x)− g(x)) dx =

∫
f(x) dx−

∫
f(x) dx

In simple terms, this rule means that when you compute the integral of functions added to-
gether, you can do so “term by term” and add the results together.

Remember again that integrating is adding up the areas of infinitely many, infinitesimally-
thin rectangles whose height is given by the function f(x). Imagine taking only three of these
rectangles as an approximation with heights given by the function f(x) at three points x1,
x2, x3. The sum of the areas of these three rectangles would be the expression below, adding
together the width × height calculation of all three.∫

(f(x) + g(x)) dx ≈ (f(x1) + g(x1)) dx+ (f(x1) + g(x2)) dx+ (f(x1) + g(x3)) dx

However, if we multiply the dx representing the infinitesimally-thin rectangle width we see we
get: ∫

(f(x) + g(x)) dx ≈ (f(x1) + g(x1)) dx+ (f(x1) + g(x2)) dx+ (f(x1) + g(x3)) dx

≈ f(x1) dx+ g(x1) dx+ f(x1) dx+ g(x2) dx+ f(x1) dx+ g(x3) dx

Then we can regroup the terms with f and the terms with g, then factor out the common dx
to get:∫

(f(x) + g(x)) dx ≈ (f(x1) + g(x1)) dx+ (f(x1) + g(x2)) dx+ (f(x1) + g(x3)) dx

≈ f(x1) dx+ g(x1) dx+ f(x1) dx+ g(x2) dx+ f(x1) dx+ g(x3) dx

≈
(
f(x1) + f(x2) + f(x3)

)
dx+

(
g(x1) + g(x2) + g(x3)

)
dx

The expression inside the first parenthesis is the sum of the heights of the three rectangles given
by the f(x) function. The expression inside of the second parenthesis is the sum of the heights
of the three rectangles given by the g(x) function. But these are just the separate integrals over
f and g like this: ∫

(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx

We can see that this would also make sense if there were 1000, or a million, or infinitely many
rectangles. If the height of each rectangle is composed of the sum of the functions f and g, then
we can compute the sum of the areas of the rectangles whose heights are given by f and the
sum of the areas of the rectangles whose heights are given by g and add those together. The
same thing works if they were subtracted, of course.

7.21 Integration Using Substitution

As with the rules of derivatives, the rules for computing the anti-derivative work for functions
having a “simple” form:

xn, ex,
1

x
, cosx, sinx
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In practice, the integrals you’ll need to compute will look a bit more involved, with some other
quantity instead of just a simple x. For example:

(2x+ 1)n , e3x−1,
1

4x+ 2
, cos (5x− 3) , sin (6x+ 4)

This does not present a problem, however. We will handle this by using substitution to make
the integrals look “simple” again. Using this approach, we can then use the anti-differentiation
rules given in Section 7.18, “Rules for Computing the Indefinite Integral (Antiderivative)”.

7.21.1 Simple Example Involving Linear Factor

Consider the integral:

∫
cos (5x− 3) dx

We don’t have a rule for computing the anti-derivative of cos (5x− 3), only one for cosu, so
start by making the substitution:

u = 5x− 3

If we change the variable in the integral from x to u, we also have to substitute an appropriate
“infinitesimal width” du to match the new variable u. The way we do this is to take the
derivative of our new variable u to see what it “requires” to be present before we make an
appropriate substitution for the existing dx. So, we compute the derivative of u:

u = 5x− 3

du

dx
= 5

du = 5 dx

We see that in order to substitute a du, we need to have 5 dx to match the u = 5x−3 substitution
we have done. That’s not a problem. We can multiply the original equation by one without
changing its meaning, and in the process introduce the value 5 that we are missing to accompany
the existing dx. ∫

cos (5x− 3) dx =

∫
cos (5x− 3) ·

1

5
· 5 dx

The 1
5 is a constant, so we can move it outside the integral as explained in Section 7.19,

“Integrating Constant Multiple of a Function”. Then, with all the right “ingredients” in place
for the substitution, we can carry out our substitution to end up with the simpler expression in
terms of u and du.∫

cos (5x− 3) dx =

∫
cos (5x− 3) · 1

5
· 5 dx =

1

5

∫
cos

5x− 3︸ ︷︷ ︸
u

 · 5 dx︸︷︷︸
du

=
1

5

∫
cos (u) du

The rule for antidifferentiation of cosu tells us that it becomes sinu+ C, so we have:∫
cos (5x− 3) dx =

1

5

∫
cos (u) du =

1

5
sin (u) + C
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Then, finally, we replace the substitution variable u with the expression it represents to end up
with an answer back in terms of x’s we started with:∫

cos (5x− 3) dx =
1

5
sin (u) + C =

1

5
sin (5x− 3) + C

As a final step, we can check our work by taking the derivative of
1

5
sin (5x− 3) + C to make

sure that we get back to the original function we integrated. Doing the derivative we get:

d

dx

(
1

5
sin (5x− 3) + C

)
=

1

5
· cos (5x− 3) · 5 = cos (5x− 3)

So we are sure the answer is correct.

7.21.2 Example Involving Additional Factor of x

Consider the integral: ∫
3x

6x2 + 1
dx

When you have multiple expressions involving x, one expression will be your u substitution, and
any remaining factors will be involved in the set of “ingredients” needed for your corresponding
du substution. For example, here we let:

u = 6x2 + 1

du

dx
= 12x

du = 12x dx

So here, to make the substitution for du we need 12x dx, however we only have a factor of 3x dx
in the numerator. To get the 12 we need, we can add a factor of 4 inside the integral, and 1

4
outside the integral. ∫

3x

6x2 + 1
dx =

1

4

∫
1

6x2 + 1
· 4 · 3x dx

=
1

4

∫
1

6x2 + 1︸ ︷︷ ︸
u

· 12x dx︸ ︷︷ ︸
du

=
1

4

∫
1

u
du

Our rule for anti-differentiating 1
u says it turns into lnu+ C, so we have:∫
3x

6x2 + 1
dx =

1

4

∫
1

u
du =

1

4
ln (u) + C

Then, finally, we replace the substitution variable u with the expression it represents to end up
with an answer back in terms of x’s we started with:∫

3x

6x2 + 1
dx =

1

4
ln (u) + C =

1

4
ln
(
6x2 + 1

)
+ C

As a final step, we can check our work by taking the derivative of
1

4
ln
(
6x2 + 1

)
+ C to make

sure that we get back to the original function we integrated. Doing the derivative we get:

d

dx

(
1

4
ln
(
6x2 + 1

)
+ C

)
=

1

4
· 1

6x2 + 1
· 12x =

3x

6x2 + 1

So we are sure the answer is correct.
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7.21.3 Example Involving Other Additional Factors

Consider the integral: ∫
(sin 3x) (cos 3x) dx

If we let u = sin 3x then du = 3 cos 3x. We can introduce the missing factor of 3 inside the
integral, and the reciprocal 1

3 outside the integral, we then end up with a simpler integral to
perform:

1

3

∫
(sin 3x)︸ ︷︷ ︸

u

3 (cos 3x) dx︸ ︷︷ ︸
du

=
1

3

∫
u du =

1

3

u2

2
+ C =

1

3
(sin 3x)2 + C =

1

3
sin2 3x+ C

In this particular example, there was a second route we could have taken that would have also
worked. If instead we let u = cos 3x then du = −3 sin 3x. We can introduce the missing factor
of −3 inside the integral, and the reciprocal −1

3 outside the integral, we then end up with a
simpler integral to perform:

−
1

3

∫
(cos 3x) (−3) (sin 3x) dx︸ ︷︷ ︸

du

= −1

3

∫
u du = −1

3

u2

2
+ C = −1

3
(cos 3x)2 + C = −1

3
cos2 3x+ C

You might ask, why did taking two alternative approaches produce different answers? Since we
know the identity that sin2x+ cos2x = 1, we can rearrange that to get cos2x = 1− sin2x and
use that to substitute 1− sin2 3x for cos23x above:

−1

3
cos2 3x+ C = −1

3

(
1− sin2 3x

)
=

1

3
sin2 3x −1

3
+ C︸ ︷︷ ︸

both constants

=
1

3
sin2 3x+D

So the answers are the same, except for the constant of integration, which doesn’t matter when
computing the definite integral.

7.21.4 Summary of Strategy for Integration by Substitution

When computing integrals in IB Maths Standard Level, you will only be asked to integrate one
of the five indefinite integrals in the formula booklet:

un, eu,
1

u
, cos (u) , sin (u)

Your challenge is to identify the correct substitution to perform in order to use one of the
five anti-derivative rules corresponding to these functions. After performing the u-substitution,
take the derivative du to find what other “ingredients” are necessary to be present in order to
substitute the simpler du expression. If any other factors containing a variable x are necessary to
be present to constitute the correct du expression, then those additional factors must already
be present in the problem. At most, you can introduce a constant inside the integral and
outside the integral.

7.22 Using Additional Information to Determine Constant of Integration

If you are given additional information, you can determine a specific value for C instead of
leaving a generic constant of integration. For example, consider the problem:
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s(t) =

∫
6e2t + t dt

If we are given the additional piece of information that s(0) = 10, we can determine the constant
of integration. Start by doing the anti-derivative to find the indefinite integral. We can do the
integral term by term, and factor out the constant 6 to get:

s(t) =

∫
6e2t + t dt

= 6

∫
e2t dt+

∫
t dt

The second term does not require any substitution because it is already of the simple form xn,
so we can already follow the rules to compute the antiderivative of that term:

s(t) = 6

∫
e2t dt+

∫
t dt

= 6

∫
e2t dt+

t2

2
+ C

For the remaining integral, substitute:

u = 2t

du = 2 dt

We can introduce a factor of 2 inside the integral and a factor of 1
2 outside the integral to get

the missing “ingredient” we need to substitute the du, then do the integration following the
anti-derivative rules for eu, and finally substitute back in the expression for u involving the
original variable t:

s(t) = 6 ·
1

2

∫
e2t2 dt+

t2

2
+ C

= 3

∫
eu du+

t2

2
+ C

= 3eu +
t2

2
+ C

= 3e2t +
t2

2
+ C

So we have found that s(t) with a constant of integration C. Now we can use the additional
piece of information provided that s(0) = 10 to find out the exact value C must have for this
particular problem at hand:

s(0) = 10 = 3e2·0 +
02

2
+ C

10 = 3 · 1 + 0 + C

10 = 3 + C

7 = C

So the exact answer to the problem is:

s(t) = 3e2t +
t2

2
+ 7
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7.23 Computing the Definite Integral

This section works the same example both analytically and using a calculator to show you the
steps involved.

7.23.1 Computing the Definite Integral Analytically

To compute a definite integral

∫ b

a
f(x) dx analytically, follow these steps:

1. Find the antiderivative F (x) using substitution if necessary

2. Write the antiderivative inside of square brackets with the boundaries

[
F (x)

]b
a

3. Calculate (F (b))− (F (a)) being careful about minus signs

For example, consider the integral

∫ 0.5

0

(
x+

sin 3x

(cos 3x)2

)
dx

Since the integrand has two terms, we can split up the integral to do it term by term:∫ 0.5

0
x dx+

∫ 0.5

0

sin 3x

(cos 3x)2
dx

The antiderivative of the first term is easy, so we can do that term first:[
x2

2

]0.5
0

+

∫ 0.5

0

sin 3x

(cos 3x)2
dx[(

0.52

2

)
−
(

02

2

)]
+

∫ 0.5

0

sin 3x

(cos 3x)2
dx

0.125 +

∫ 0.5

0

sin 3x

(cos 3x)2
dx

For integrating the second term, we substitute:

u = cos 3x

du = − sin (3x) · 3 = −3 sin 3x dx

We introduce a factor of -3 inside the integral and −1
3 outside the integral to get the required

−3 sin 3x dx, then substitute in our u and du and do the antiderivative. We temporarily write
the bounds with x = a and x = b to remind ourselves they were for the original variable x:

0.125 +

(
−

1

3

)∫ x=0.5

x=0

1

(cos 3x︸ ︷︷ ︸
u

)2
· (−3) sin 3x dx︸ ︷︷ ︸

du

0.125− 1

3

∫ x=0.5

x=0

1

u2
du

0.125− 1

3

∫ x=0.5

x=0
u−2 du

0.125− 1

3

[
u−2+1

−2 + 1

]x=0.5

x=0

0.125− 1

3

[
u−1

−1

]x=0.5

x=0

0.125 +
1

3

[
1

u

]x=0.5

x=0
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Now we can substitute back in the expression representing our u, drop the temporary reminder
“x =” notation from the bounds since the expression is back in terms of the original x variable,
and finish the job:

0.125 +
1

3

[
1

u

]x=0.5

x=0

0.125 +
1

3

[
1

cos 3x

]0.5
0

0.125 +
1

3

[
1

cos (3 · 0.5)
− 1

cos (3 · 0)

]
0.125 +

1

3

[
1

0.070737
− 1

1

]
0.125 +

1

3

[
14.136833− 1

]
0.125 +

1

3

[
13.136833

]
≈ 4.503944

7.23.2 Computing the Definite Integral Using Technology

On the TI-Nspire CX, with a calculator tab open in your current document, you can choose
the menu option Calculus →Numerical Integral to enter the problem from the previous section.
Figure 133 shows the result.

Figure 133: Computing a Definite Integral on the TI-Nspire CX

7.23.3 Computing Normal Distribution Probability Using a Definite Integral

We learned in Section 6.20, “Graphing the Normal Distribution and Computing Bounded Area”
that for a normally distributed data set with mean µ and standard deviation σ, the probability
that a random variable X will fall in a range a ≤ x ≤ b, written P (a ≤ X ≤ b), is the area
under the curve normPdf(x,µ,σ) between a and b. We also know that the definite integral of
any function f(x) between a and b represents the area under the curve f(x) between a and b.
Putting these two ideas together, we can write:

P (a ≤ X ≤ b) = Area under normPdf(x,µ,σ) between a and b

=

∫ b

a
normPdf(x,µ,σ)

= normCdf(a,b,µ,σ)

Using this new knowledge, we can recompute the probability calculation from Section 6.20,
“Graphing the Normal Distribution and Computing Bounded Area” using the following integral:
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P (154.1 ≤ X ≤ 163.9) =

∫ 163.9

154.1
normPdf(x,159,4.9) = normCdf(154.1,163.9,159,4.9)

As shown in Figure 134, we see that the definite integral produces the same 0.683 result (to three
significant figures) as the Analyze Graph →Bounded Area computation. It also confirms
that the normCdf() function we learned about in Section 6.22, “Using the Calculator for Normal
Distribution Problems” produces the identical result.

Figure 134: Computing Probability Using Integral of normPDF(x)

7.24 Displacement s, Velocity v, and Acceleration a

The displacement function s(t) measures the distance a body has traveled away from its starting
point. The velocity function v(t) measures the rate of change in the distance, so v(t) = s′(t).
The acceleration function a(t) measures the rate of change in the velocity (how quickly the
body is speeding up or slowing down), so a(t) = v′(t) = s′′(t). This leads to these relationships
illustrated in Table 17.

Concept B Rate of Change Area Under

Displacement s(t)
∫
v(t)

Velocity v(t) s′(t)
∫
a(t)

Acceleration a(t) v′(t)

Table 17: Relationship Between Displacement, Velocity, and Acceleration

7.25 Determining Position Function from Acceleration

Newton and Liebniz used integration to study how acceleration due to gravity affected the path
of an object in flight. Suppose you throw a ball upward at a height of 1.5 meters with initial
velocity of 6 m/s. We can use the relationships between acceleration, velocity, and displacement
mentioned in the previous section to determine the velocity the ball will land with.

Recalling that acceleration due to gravity is a constant −9.8 m/s2, so as a function of time,
a(t) = −9.8. We integrate the acceleration function a(t) to get the velocity function v(t):

v(t) =

∫
a(t) dt =

∫
−9.8 dt = −9.8t+ C

Use the initial velocity v(0) = 6 m/s to determine the value of the constant of integration C:

v(0) = −9.8 · 0 + C = 6

C = 6
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Therefore, the velocity function is v(t) = −9.8t+ 6.

Next, integrate the velocity function to get the position function s(t):

s(t) =

∫
v(t) dt =

∫
−9.8t+ 6 dt =

−9.8t2

2
+ 6t+ C = −4.9t2 + 6t+ C

Use the initial position s(0) = 1.5 to determine the value of the constant of integration:

s(0) = −4.9 · 02 + 6 · 0 + C = 1.5

C = 1.5

Therefore, the position function is s(t) = −4.9t2 + 6t+ 1.5.

Figure 135 shows the graph of the position function from time t = 0 until the position above
ground (i.e. the height) is zero. Using a graphing calculator (or the quadratic equation), we
find that the position function s(t) = −4.9t2 + 6t+ 1.5 = 0 when t = 1.437 seconds.

Figure 135: Graph of s(t) = −4.9t2 + 6t+ 1.5

The ball hits the ground (i.e. the height given by the position function is zero) when t = 1.437
seconds, so we can calculate the velocity of the ball by plugging t = 1.437 into the velocity
function:

v(1.437) = −9.8 · 1.437 + 6 = −8.0826 ≈ −8.1 m/s
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7.26 Total Area Under a Curve

If you need to compute the total area under a function f(x) over an interval where the function
is both above and below the x-axis, you can use two approaches:

• Integrate the absolute value of the function

∫ b

a
|f(x)| dx

• Identify the zeros, use them to compute separate integrals for f(x) over each interval
separately, then add together the parts, taking the absolute value of the areas that are
negative.

7.27 Area Between Curves

To find the area between two curves f(x) and g(x) between x = a and x = b compute the
definite integral of the absolute value of the difference between the functions:∫ b

a
|f(x)− g(x)| dx

In practice, the procedure you follow to compute the answer depends on whether you are able
to use your calculator.

7.27.1 Area Between Curves Using Calculator

Suppose you’re given two curves g(x) = cos
(
x2
)

and f(x) = ex as shown in Figure 136 and you
are asked to find the area between the curves from -1.4 to 0.3. Using your calculator’s “Analyze
Graph” feature, you can identify that over the interval in question, the two curves intersect
at x = −1.112 and again at x = 0. On the intervals (−1.4,−1.112) and (0, 0.3) you see that
f(x) > g(x), while on the interval (−1.112, 0) you have g(x) > f(x).

Figure 136: Computing the Area Between Two Curves

If you are using your calculator, as shown in Figure 137 you can simply bang in the absolute
value of the difference of the functions and compute the answer without worrying about the
points of intersection or the intervals where one function might flip-flop to being larger than
the other.
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Figure 137: Integrating Absolute Value of Difference of Functions on TI-Nspire CX

7.27.2 Area Between Curves Analytically (Without the Calculator)

If you must calculate the area between curves f(x) and g(x) analytically, then you must pay
attention to which function is greater than the other over which intervals. You start by identi-
fying the places where the functions intersect by setting f(x) = g(x) and solving for x. Then
you need to perform the area calculation by splitting up the integral into separate parts, one
per interval. In each part, choose the difference that will result in a positive quantity by putting
the larger function first in the subtraction. For example, using the curves in Figure 136, you
would have to compute:∫ 0.3

−1.4
|f(x)− g(x)| dx =

∫ −1.112
−1.4

f(x)− g(x)︸ ︷︷ ︸
f(x)>g(x) here

dx+

∫ 0

−1.112
g(x)− f(x)︸ ︷︷ ︸
g(x)>f(x) here

dx+

∫ 0.3

0
f(x)− g(x)︸ ︷︷ ︸
f(x)>g(x) here

dx

Of course, in a non-calculator problem the points of intersection and the function values to
compute would be something simpler than the functions and values in the previous section, but
the concept of identifying the intersection points and performing the integral as separate parts
added together (with the larger function written first in the subtraction) is still the key point
to remember here.

7.28 Net Change in Displacement versus Total Distance Traveled

It’s important to understand the difference between displacement and distance traveled so you
know how to calculate each one when requested.

7.28.1 Difference Between Distance and Displacement

Figure 138 illustrates displacement. It is a vector quantity that tells how a body’s current
position related to its starting point.

Figure 138: Displacement is Vector Measure from Initial Position to Final Position7

Figure 139 illustrates distance. It is a scalar quantity that measures how far a body has to
travel along a path to get from its initial position to its current position.

7Source: tutorvista.com/physics/difference-between-distance-and-displacement
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Figure 139: Distance is Scalar Measure of Actual Length of Path Traveled8

7.28.2 Computing Total Distance Traveled

The velocity function v(t) is the derivative of the displacement function s(t), giving the rate of
change in distance at any time t. Vice versa, the displacement function s(t) is the integral of the
velocity function v(t). The Fundamental Theorem of Calculus tells us that the area under the
velocity curve equals the change in the displacement function. Since displacement has direction
and can be backwards and forwards, when you compute the integral of the velocity function,
you end up determining the net change in displacement. If some of the area under the
velocity function is negative, it “cancels out” the area under the velocity function that might be
positive, possibly resulting in a net change in displacement that is zero or maybe even negative.

If you want to calculate the total distance traveled (regardless of direction) you need to compute
the area of the absolute value of the velocity function so that any negative values don’t cancel
out positive values in the distance calculation. Therefore, to compute the total distance traveled
from time t1 to t2, calculate the definite integral between t1 and t2 of the absolute value of the
velocity function, with respect to time.

Total Distance Traveled =

∫ t2

t1

|v(t)| dt

8Source: tutorvista.com/physics/difference-between-distance-and-displacement
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