Grade 10 B Logarithms Quiz 2- February 22th 2017

Name:

HSN-Q.A.3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. HSF-BF, (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

HSF-LE.A.4. For exponential models, express as a logarithm the solution to all $\alpha = 0$ where α , α , and α are numbers and the base α is α , α , α is explicitly using technology

A) Write as a single logarithm:

1)
$$2 - \frac{1}{2} \log 4 - \log 6$$
 $\log 10^{2} - \log 4^{\frac{1}{2}} - \log 6$
 $\log \frac{10^{2}}{2 \times 6}$
 $\log \frac{10^{2}}{2 \times 6}$
 $\log \frac{10^{2}}{2 \times 6}$
 $\log \frac{10^{2}}{2 \times 6}$
 $\log \frac{10^{2}}{2 \times 6}$

B) Solve for x without using calculator (i.e. show steps):

$$1) x = \ln(e\sqrt{e})$$

2)
$$\log_3(x^2+5)=2$$
 $\chi^2+5=3^2$
 $\chi^2=4$

3) $\log_5(2x-1)=0$
 $2x-1=5^\circ$
 $\chi=1$
 $2x-1=1$
 $2x=2$
4) $\log_6 = \log(x+5) + \log(x)$
 $\log_6 = \log(x+5)$
 $\log_6 = \log(x+5)$

C) The temperature (T) of a liquid <u>t minutes</u> after it is placed in a refrigerator, is given by $T = 4 + 96 \times (e^{-0.03t})$ °C. Find the time required for the temperature to reach 25° C. Write the answer to the nearest minute.

$$25 = 4 + 96e^{-0.03t}$$

$$\frac{21}{96} = e^{-0.03t}$$

$$\ln \frac{21}{96} = -0.03t$$

$$t = \frac{21}{96} = -0.03t$$

$$t = \frac{21}{96} = -0.03t$$

$$t = \frac{21}{96} = -0.03t$$

Grade 10 B Logarithms Quiz- February 8th 2017

Name: Answer Ken

HSN-Q.A.3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

HSF-BF.B.5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

HSF-LE.A.4. For exponential models, express as a logarithm the solution to abet = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology

A) Write as a single logarithm:

3)
$$4 \ln 2 + 2 \ln 3$$

$$\ln 2^{4} - \ln 3^{2}$$

$$= \ln \frac{2^{4}}{3^{2}}$$

B) Solve for x without using calculator (i.e. show steps):

$$1) x = \ln\left(\frac{e}{e^3}\right)$$

$$X = ln \frac{1}{e^2} = ln e^{-2} = -2$$

C) The weight of a radioactive isotope remaining after t weeks is given by

$$W_t = 8000 e^{-\frac{t}{20}}$$
 grams.

Find the time (to the nearest week) for the weight to reach 1000g.

$$1000 = 8000 e^{-t/20}$$
 $\frac{4000}{8000} = e^{-t/20}$
 $e^{t/20} = \frac{1}{8}$
 $\ln \frac{1}{8} = -t/20$
 $t = -20 \ln \frac{1}{8}$
 $t = 42 \text{ Weeks}$