

# Mathematics Department SL Math Year 1

**Sequences, Series and Exponents-Test** 

**Summative Assessment** 

Teachers: Mr. Vergara and Ms. Abdulla
October 3<sup>rd</sup> 2016

Name: Raa Pa Abdulla Mark:

## Instructions:

- 1. Do not open the assessment until instructed to so.
- 2. Answer all questions on the paper (Request extra paper if necessary)
- 2. Show ALL the working out required to get answers.
- 3. A graphic display calculator is allowed for this paper

#### Multiple Choice

Identify the choice that best completes the statement or answers the question.



1. Find the arithmetic mean  $a_n$  of  $a_{n-1} = 3.9$  and  $a_{n+1} = 7.1$ .

5.5

Write the explicit formula for the geometric sequence. Then find the fifth term in the sequence.



2. 
$$a_1 = -4$$
,  $a_2 = 8$ ,  $a_3 = -16$ 

a.  $a_n = -2 \cdot (-4)^{n-1}; -512$ b.  $a_n = -4 \cdot (2)^n; -64$ 

c. 
$$a = -4 \cdot (-2)^n$$
; 128

b. 
$$a_{1} = -4 \cdot (2)^{n}$$
; -64

d. 
$$a_n = -4 \cdot (-2)^{n-1}; -64$$

What is the sum of the finite arithmetic series?



3. 
$$(-5)+0+5+10+...+65$$

d. 445

Does the infinite geometric series diverge or converge? Explain.



4. 
$$\frac{1}{5} + \frac{1}{10} + \frac{1}{20} + \frac{1}{40} + \dots$$

- a. It converges; it has a sum.
- b. It diverges; it does not have a sum.
- c. It diverges; it has a sum.
- d. It converges; it does not have a sum.

[Total 4 Marks]

#### **SECTION A - SEQUENCES AND SERIES**

- 1. Find k given the consecutive arithmetic terms:
  - a 5, k,  $k^2 8$

[3 Marks]

$$K-5 = K^{2}-8-K$$
.  
 $K^{2}-2K-3=0$   
 $(K-3)(K+1)=0$   
 $K=3$ ,  $K=-1$ 

- 2. Find k given that the following are consecutive terms of a geometric sequence:
  - k, k+8, 9k

[4 Marks]

$$\frac{K+8}{K} = \frac{9K}{K+8}$$

$$(K+8)^{2} = 9K^{2}$$

$$(K+8)^{2} = 9K^{2}$$

$$K^{2} + |6K+64| = 9K^{2}$$

$$8K^{2} - |6K-64| = 0$$

$$8(K^{2} - 2K - 8) = 0$$

$$8(K+2)(K-4) = 0$$

3. Three consecutive terms of an arithmetic sequence have a sum of 12 and a product of -80. Find the terms.

(x-d), (x), (x+d) [5 Marks] x-d+x+d=12 d=36 3x=12  $d=\pm 6$  x=4 x=4x=4

4. Find the sum of the infinite geometric series

$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \dots$$

[ 4 Marks ]

$$U_1 = \frac{2}{3}$$

$$Y = -\frac{2}{3} = \frac{-4/a}{2/3}$$

$$S_{\infty} = \frac{U_1}{1 - Y} = \frac{2/3}{1 - (-\frac{2}{3})} = \frac{2}{5}$$



Note: This diagram is inaccurate as the motion is really up and down on the same spot. It has been separated out to help us visualise what is happening.

[7 Marks]

6. A company offers its employees a choice of two salary schemes A and B over a period of 10 years.

Scheme A: offers a starting salary of \$11000 in the first year and then an annual increase of \$400 per year.

(a) (i) Write down the salary paid in the second year and in the third year.

(ii) Calculate the total (amount of) salary paid over ten years.

[3 Marks]

a) i 
$$2^{nd}yr = 11000 + 400 = 11400$$
 $3^{rd}yr = 11000 + 400 + 400 = 11800$ 

ii)  $S_{10} = \frac{n}{2} (2u_1 + (n-1)d)$ 

$$= \frac{10}{2} (2(11000) + 9(400))$$

$$= 128000$$

Scheme B: offers a starting salary of \$10000 dollars in the first year and then an annual increase of 7% of the previous year's salary.

- (b) (i) Write down the salary paid in the second year and in the third year.
  - (ii) Calculate the salary paid in the tenth year.

[4 Marks]

$$\begin{array}{c}
\boxed{b} \ \ \overrightarrow{l}, \ \ 2^{\text{hd}} \ yr: \\
U_2 = 10000 (1+0.07)^{-1} 10700 \\
U_3 = 10000 (1+0.07)^2 = $11449 \\
\overrightarrow{ii} \ U_{10} = 1000 (1+0.07)^4 = 18384.6 \\
\approx 18400
\end{array}$$

### **SECTION C - EXPONENTIAL**

1. Write as a single power of 3:

$$a = \frac{27}{9^a} = \frac{3^3}{3^{2a}} = 3^{3-2a}$$

**b** 
$$(\sqrt{3})^{1-x} \times 9^{1-2x}$$



2. Expand and simplify:

$$e^{x}(e^{-x}+e^{x})$$

**b** 
$$(2^x + 5)^2$$

c 
$$(x^{\frac{1}{2}}-7)(x^{\frac{1}{2}}+7)$$

 $e^{\circ} + e^{2x}$   $1 + e^{2x}$   $2x + 5(2^{x}) + 5(2^{x}) + 5(2^{x}) + 25$   $2x + 10(2^{x}) + 25$ [Total 6]  $2x + 5(2^{x}) + 5(2^{x}) + 25$ [Total 6 Marks]