NON CALCULATOR

1 For each graph, state:

i the domain

ii the range

iii whether the graph shows a function.

C

d

2 If $f(x) = 2x - x^2$, find:

a f(2)

b f(-3)

c $f(-\frac{1}{2})$

3 Suppose f(x) = ax + b where a and b are constants. If f(1) = 7 and f(3) = -5, find a and b.

4 If $g(x) = x^2 - 3x$, find in simplest form:

a g(x+1) **b** $g(x^2-2)$

5 For each of the following graphs determine:

i the domain and range

ii the x and y-intercepts

iii whether it is a function.

6 Draw a sign diagram for:

a
$$(3x+2)(4-x)$$

b
$$\frac{x-3}{x^2+4x+4}$$

7 If f(x) = ax + b, f(2) = 1, and $f^{-1}(3) = 4$, find a and b.

8 Copy the following graphs and draw the inverse function on the same set of axes:

9 Find $f^{-1}(x)$ given that f(x) is: **a** 4x+2 **b** $\frac{3-5x}{4}$

10 Consider $f(x) = x^2$ and g(x) = 1 - 6x.

a Show that $f(-3) = g(-\frac{4}{3})$. **b** Find $(f \circ g)(-2)$.

• Find x such that g(x) = f(5).

11 Given $f: x \mapsto 3x + 6$ and $h: x \mapsto \frac{x}{3}$, show that $(f^{-1} \circ h^{-1})(x) = (h \circ f)^{-1}(x)$.

CALCULATOR

1 For each of the following graphs, find the domain and range:

a

ь

2 If f(x) = 2x - 3 and $g(x) = x^2 + 2$, find in simplest form:

a
$$(f \circ g)(x)$$

b
$$(g \circ f)(x)$$

3 Draw a sign diagram for:

a
$$\frac{x^2-6x-16}{x-3}$$

b
$$\frac{x+9}{x+5} + x$$

4 Consider $f(x) = \frac{1}{x^2}$.

a For what value of x is f(x) undefined, or not a real number?

Sketch the graph of this function using technology.

• State the domain and range of the function.

5 Consider the function $f(x) = \frac{ax+3}{x-b}$.

a Find a and b given that y = f(x) has asymptotes with equations x = -1 and y = 2.

b Write down the domain and range of $f^{-1}(x)$.

6 Consider the function $f: x \mapsto \frac{4x+1}{2-x}$.

a Determine the equations of the asymptotes.

b State the domain and range of the function.

c Discuss the behaviour of the function as it approaches its asymptotes.

d Determine the axes intercepts.

Sketch the function.

7 Consider the functions f(x) = 3x + 1 and $g(x) = \frac{2}{x}$.

a Find $(g \circ f)(x)$.

b Given $(g \circ f)(x) = -4$, solve for x.

• Let $h(x) = (g \circ f)(x), x \neq -\frac{1}{3}$.

i Write down the equations of the asymptotes of h(x).

ii Sketch the graph of h(x) for $-3 \le x \le 2$.

iii State the range of h(x) for the domain $-3 \le x \le 2$.

- **8** Consider $f: x \mapsto 2x 7$.
 - **a** On the same set of axes graph y = x, y = f(x), and $y = f^{-1}(x)$.
 - **b** Find $f^{-1}(x)$ using variable interchange.
 - Show that $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$, the identity function.
- **9** The graph of the function $f(x) = -3x^2$, $0 \le x \le 2$ is shown alongside.
 - **a** Sketch the graph of $y = f^{-1}(x)$.
 - **b** State the range of f^{-1} .
 - c Solve:

i
$$f(x) = -10$$

ii $f^{-1}(x) = 1$

