Functions - November 28, 2016 [41 marks]

1a. Let $f(x)=3 x-2$ and $g(x)=\frac{5}{3 x}$, for $x \neq 0$.

Find $f^{-1}(x)$.

Markscheme

interchanging x and y (M1)
eg $\quad x=3 y-2$
$f^{-1}(x)=\frac{x+2}{3} \quad\left(\operatorname{accept} y=\frac{x+2}{3}, \frac{x+2}{3}\right) \quad$ A1 \quad N2
[2 marks]

1b. Show that $\left(g \circ f^{-1}\right)(x)=\frac{5}{x+2}$.

Markscheme

attempt to form composite (in any order) (M1)
eg $g\left(\frac{x+2}{3}\right), \frac{\frac{5}{3 x}+2}{3}$
correct substitution A1
eg $\frac{5}{3\left(\frac{x+2}{3}\right)}$
$\left(g \circ f^{-1}\right)(x)=\frac{5}{x+2} \quad A G \quad$ NO
[2 marks]

1c. Let $h(x)=\frac{5}{x+2}$, for $x \geqslant 0$. The graph of h has a horizontal asymptote at $y=0$.

Find the y-intercept of the graph of h.

Markscheme

valid approach (M1)
eg $\quad h(0), \frac{5}{0+2}$
$y=\frac{5}{2} \quad(\operatorname{accept}(0,2.5)) \quad A 1 \quad N 2$
[2 marks]

Markscheme

Notes: Award $\boldsymbol{A 1}$ for approximately correct shape (reciprocal, decreasing, concave up).
Only if this $\boldsymbol{A 1}$ is awarded, award $\boldsymbol{A} \mathbf{2}$ for all the following approximately correct features: y-intercept at $(0,2.5)$, asymptotic to x-axis, correct domain $x \geqslant 0$.

If only two of these features are correct, award $\boldsymbol{A 1}$.

[3 marks]

1e. For the graph of h^{-1}, write down the x-intercept;

Markscheme

$x=\frac{5}{2} \quad(\operatorname{accept}(2.5,0)) \quad$ A1 \quad N1
[1 mark]

1f. For the graph of h^{-1}, write down the equation of the vertical asymptote.

Markscheme

$x=0 \quad$ (must be an equation) A1 N1
[1 mark]

1g. Given that $h^{-1}(a)=3$, find the value of a.

Markscheme

METHOD 1

attempt to substitute 3 into h (seen anywhere) (M1)
$e g \quad h(3), \frac{5}{3+2}$
correct equation (A1)
eg $\quad a=\frac{5}{3+2}, h(3)=a$
$a=1 \quad A 1 \quad N 2$
[3 marks]
METHOD 2
attempt to find inverse (may be seen in (d)) (M1)
eg $\quad x=\frac{5}{y+2}, h^{-1}=\frac{5}{x}-2, \quad \frac{5}{x}+2$
correct equation, $\frac{5}{x}-2=3 \quad$ (A1)
$a=1 \quad$ A1 \quad N2
[3 marks]

2a. Part of the graph of a function f is shown in the diagram below.

On the same diagram sketch the graph of $y=-f(x)$.

M1A1 N2

Note: Award M1 for evidence of reflection in x-axis, $A 1$ for correct vertex and all intercepts approximately correct.

2b. Let $g(x)=f(x+3)$.
(i) Find $g(-3)$.
(ii) Describe fully the transformation that maps the graph of f to the graph of g.

Markscheme

(i) $g(-3)=f(0) \quad(A 1)$
$f(0)=-1.5 \quad A 1 \quad N 2$
(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0} \quad A 1 A 1 \quad N 2$
[4 marks]

3a. Consider $f(x)=2 k x^{2}-4 k x+1$, for $k \neq 0$. The equation $f(x)=0$ has two equal roots.

Find the value of k.

Markscheme

valid approach (M1)
e.g. $b^{2}-4 a c, \Delta=0,(-4 k)^{2}-4(2 k)(1)$
correct equation A1
e.g. $(-4 k)^{2}-4(2 k)(1)=0,16 k^{2}=8 k, 2 k^{2}-k=0$
correct manipulation A1
e.g. $8 k(2 k-1), \frac{8 \pm \sqrt{64}}{32}$
$k=\frac{1}{2} \quad A 2 \quad N 3$
[5 marks]

3b. The line $y=p$ intersects the graph of f. Find all possible values of p.

Markscheme

recognizing vertex is on the x-axis M1
e.g. $(1,0)$, sketch of parabola opening upward from the x-axis
$p \geq 0 \quad$ A1 \quad N1
[2 marks]

4a. Let $f(x)=x^{2}$ and $g(x)=2(x-1)^{2}$.
[2 marks]

The graph of g can be obtained from the graph of f using two transformations.
Give a full geometric description of each of the two transformations.

Markscheme

in any order
translated 1 unit to the right A1 N1
stretched vertically by factor 2 A1 N1
[2 marks]

4b. The graph of g is translated by the vector $\binom{3}{-2}$ to give the graph of h.
The point $(-1,1)$ on the graph of f is translated to the point P on the graph of h.
Find the coordinates of P .

Markscheme

METHOD 1

finding coordinates of image on $g \quad(A 1)(A 1)$
e.g. $-1+1=0,1 \times 2=2,(-1,1) \rightarrow(-1+1,2 \times 1),(0,2)$

P is $(3,0) \quad$ A1A1 $N 4$

METHOD 2

$h(x)=2(x-4)^{2}-2 \quad(A 1)(A 1)$
P is $(3,0) \quad$ A1A1 $N 4$

5a. The following diagram shows part of the graph of a quadratic function f.

The x-intercepts are at $(-4,0)$ and $(6,0)$, and the y-intercept is at $(0,240)$.

Write down $f(x)$ in the form $f(x)=-10(x-p)(x-q)$.

Markscheme

$f(x)=-10(x+4)(x-6) \quad$ A1A1 $\quad N 2$

[2 marks]

5b. Find another expression for $f(x)$ in the form $f(x)=-10(x-h)^{2}+k$.

Markscheme

METHOD 1

attempting to find the x-coordinate of maximum point
(M1)
e.g. averaging the x-intercepts, sketch, $y^{\prime}=0$, axis of symmetry
attempting to find the y-coordinate of maximum point (M1)
e.g. $k=-10(1+4)(1-6)$
$f(x)=-10(x-1)^{2}+250 \quad$ A1A1 \quad N4

METHOD 2

attempt to expand $f(x) \quad$ (M1)
e.g. $-10\left(x^{2}-2 x-24\right)$
attempt to complete the square (M1)
e.g. $-10\left((x-1)^{2}-1-24\right)$
$f(x)=-10(x-1)^{2}+250 \quad$ A1A1 \quad N4
[4 marks]

5c. Show that $f(x)$ can also be written in the form $f(x)=240+20 x-10 x^{2}$.

Markscheme

attempt to simplify (M1)
e.g. distributive property, $-10(x-1)(x-1)+250$
correct simplification A1
e.g. $-10\left(x^{2}-6 x+4 x-24\right),-10\left(x^{2}-2 x+1\right)+250$
$f(x)=240+20 x-10 x^{2} \quad$ AG \quad NO
[2 marks]

