1a. Let
$$f(x) = 3x - 2$$
 and $g(x) = \frac{5}{3x}$, for $x \neq 0$.

Find $f^{-1}(x)$.

Markscheme

interchanging x and y (M1) eg x = 3y - 2 $f^{-1}(x) = \frac{x+2}{3}$ (accept $y = \frac{x+2}{3}$, $\frac{x+2}{3}$) A1 N2 [2 marks]

1b. Show that
$$(g \circ f^{-1})(x) = \frac{5}{x+2}$$
.

Markscheme

attempt to form composite (in any order) (M1)

$$eg \quad g\left(\frac{x+2}{3}\right), \quad \frac{\frac{5}{3x}+2}{3}$$

correct substitution AI
$$eg \quad \frac{5}{3\left(\frac{x+2}{3}\right)}$$

 $\left(g \circ f^{-1}\right)(x) = \frac{5}{x+2} \quad AG \quad N0$
[2 marks]

1c. Let $h(x) = \frac{5}{x+2}$, for $x \ge 0$. The graph of *h* has a horizontal asymptote at y = 0.

Find the *y*-intercept of the graph of *h*.

Markscheme

valid approach (MI) eg $h(0), \frac{5}{0+2}$ $y = \frac{5}{2}$ (accept (0, 2.5)) A1 N2 [2 marks] [2 marks]

[2 marks]

[2 marks]

Notes: Award A1 for approximately correct shape (reciprocal, decreasing, concave up). Only if this A1 is awarded, award A2 for all the following approximately correct features: y-intercept at (0, 2.5), asymptotic to x-axis, correct domain $x \ge 0$.

If only two of these features are correct, award A1.

[3 marks]

1e. For the graph of h^{-1} , write down the *x*-intercept;

Markscheme

 $x = \frac{5}{2} (\text{accept} (2.5, 0))$ A1 N1 [1 mark]

1f. For the graph of h^{-1} , write down the equation of the vertical asymptote.

Markscheme

x = 0 (must be an equation) A1 N1 [1 mark]

19. Given that $h^{-1}(a) = 3$, find the value of *a*.

[1 mark]

[1 mark]

[3 marks]

METHOD 1

attempt to substitute 3 into *h* (seen anywhere) (M1) eg h(3), $\frac{5}{3+2}$ correct equation (A1) eg $a = \frac{5}{3+2}$, h(3) = a a = 1 A1 N2 [3 marks] METHOD 2 attempt to find inverse (may be seen in (d)) (M1) eg $x = \frac{5}{y+2}$, $h^{-1} = \frac{5}{x} - 2$, $\frac{5}{x} + 2$ correct equation, $\frac{5}{x} - 2 = 3$ (A1) a = 1 A1 N2 [3 marks]

2a. Part of the graph of a function f is shown in the diagram below.

On the same diagram sketch the graph of y = -f(x).

[2 marks]

Note: Award M1 for evidence of reflection in x-axis, A1 for correct vertex and all intercepts approximately correct.

2b. Let
$$g(x) = f(x + 3)$$
.

- (i) Find g(-3).
- (ii) Describe fully the transformation that maps the graph of f to the graph of g.

Markscheme

(i)
$$g(-3) = f(0)$$
 (A1)
 $f(0) = -1.5$ A1 N2
(ii) translation (accept shift, slide, etc.) of $\begin{pmatrix} -3\\ 0 \end{pmatrix}$ A1A1 N2

[4 marks]

3a. Consider $f(x) = 2kx^2 - 4kx + 1$, for $k \neq 0$. The equation f(x) = 0 has two equal roots.

[5 marks]

Find the value of k.

[4 marks]

valid approach (MI) e.g. $b^2 - 4ac$, $\Delta = 0$, $(-4k)^2 - 4(2k)(1)$ correct equation A1 e.g. $(-4k)^2 - 4(2k)(1) = 0$, $16k^2 = 8k$, $2k^2 - k = 0$ correct manipulation A1 e.g. 8k(2k - 1), $\frac{8\pm\sqrt{64}}{32}$ $k = \frac{1}{2}$ A2 N3 [5 marks]

3b. The line y = p intersects the graph of f. Find all possible values of p.

Markscheme

recognizing vertex is on the *x*-axis MIe.g. (1, 0), sketch of parabola opening upward from the *x*-axis $p \ge 0$ AI NI[2 marks]

4a. Let
$$f(x) = x^2$$
 and $g(x) = 2(x - 1)^2$.

The graph of g can be obtained from the graph of f using two transformations.

Give a full geometric description of each of the two transformations.

Markscheme

in any order translated 1 unit to the right A1 N1 stretched vertically by factor 2 A1 N1 [2 marks]

4b. The graph of g is translated by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ to give the graph of h.

The point (-1, 1) on the graph of *f* is translated to the point P on the graph of *h*. Find the coordinates of P. [2 marks]

[2 marks]

[4 marks]

METHOD 1

finding coordinates of image on g (A1)(A1) e.g. -1 + 1 = 0, $1 \times 2 = 2$, $(-1, 1) \rightarrow (-1 + 1, 2 \times 1)$, (0, 2)P is (3, 0) A1A1 N4 **METHOD 2** $h(x) = 2(x-4)^2 - 2$ (A1)(A1) P is (3, 0) *A1A1 N4*

5a. The following diagram shows part of the graph of a quadratic function f.

2400 'n 6\

The x-intercepts are at (-4, 0) and (6, 0), and the y-intercept is at (0, 240).

Write down f(x) in the form f(x) = -10(x - p)(x - q).

Markscheme

f(x) = -10(x+4)(x-6) A1A1 N2 [2 marks]

5b. Find another expression for f(x) in the form $f(x) = -10(x - h)^2 + k$.

[4 marks]

[2 marks]

METHOD 1

attempting to find the *x*-coordinate of maximum point (M1) e.g. averaging the *x*-intercepts, sketch, y' = 0, axis of symmetry attempting to find the *y*-coordinate of maximum point (M1) e.g. k = -10(1 + 4)(1 - 6) $f(x) = -10(x - 1)^2 + 250$ A1A1 N4 **METHOD 2** attempt to expand f(x) (M1) e.g. $-10(x^2 - 2x - 24)$ attempt to complete the square (M1) e.g. $-10((x - 1)^2 - 1 - 24)$ $f(x) = -10(x - 1)^2 + 250$ A1A1 N4 [4 marks]

5c. Show that f(x) can also be written in the form $f(x) = 240 + 20x - 10x^2$.

Markscheme

attempt to simplify (M1) e.g. distributive property, -10(x - 1)(x - 1) + 250correct simplification A1 e.g. $-10(x^2 - 6x + 4x - 24)$, $-10(x^2 - 2x + 1) + 250$ $f(x) = 240 + 20x - 10x^2$ AG N0 [2 marks]

© International Baccalaureate Organization 2016 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for Universal American School