G11
Today:

- Test 6 - solution
- Paper2: Calculator

T1 N-spire> How to use it in the website

0

$$
\begin{aligned}
& Q 1, a \\
& f(x)=\log _{3} \sqrt{x}
\end{aligned}
$$

$1 f^{-1}(x)$:

$$
\underbrace{\begin{array}{r}
(\sqrt{y})^{2}=\left(3^{x}\right)^{2} \\
y=3^{2 x}
\end{array}}_{\begin{array}{l}
\left(3^{x}\right)^{2}(\sqrt{y})^{2} \\
3^{2 x}=y
\end{array}}
$$

$$
\begin{aligned}
& \text { range } \\
& f^{-1}(x)=3^{2 x} \\
& \{y \mid y>0\} \\
& y>0
\end{aligned}
$$

$$
\begin{aligned}
& \left(f^{-1} \circ g\right)(2) \quad f^{-1}(\lambda)=3^{2 x} \\
& f^{-1}(g(2)) \\
& g(2)=\log _{3} 2 \\
& f^{-1}\left(\log _{3} 2\right)=3^{3} 2\left(\log _{3}\right) \\
& =3^{2 \log _{3} 2} \\
& =3^{\log _{3} 2^{2}} \\
& =2^{2}=4
\end{aligned}
$$

©

$$
f(2)=3
$$

find y value when $x=2$

(b) $f^{-1}(-1)=0$
y value of

$$
\begin{aligned}
& f(x)=(x-1)-9 \\
& h=1 \quad k(x)=-(x-1)+9 \\
& k=-9 \\
& g(x)=-(x-3)^{2}+1
\end{aligned}
$$

$h: 1 \rightarrow 3$ 2 unitsvight h, k
$k:+9 \rightarrow 18$ down
$P=2$
$q=-8$
(4a)

$$
\begin{aligned}
& x=4 \\
& h=4 \\
& k=2
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& b=a(0-4)^{2}+2 \\
& 6=a(16)+2 \\
& 4=16 a \\
& \left(\begin{array}{c}
h \\
(4,2)
\end{array}\right. \\
& \left(\begin{array}{ll}
x & y \\
0 & , \\
0
\end{array}\right) \\
& a=\frac{1}{4}
\end{aligned}
$$

$$
f(x)=p+\frac{q}{x-q} \quad \begin{array}{r}
\quad x \neq q \\
v_{A}: x=3
\end{array}
$$

VA:

$$
\begin{aligned}
& x-q=0 \\
& x=q \\
& x=3
\end{aligned} \quad \therefore q=3
$$

$$
\begin{aligned}
& y \text { int }=(0,4) \\
& y=p+\frac{q}{x-q} \\
& 4=p+\frac{q}{0-3} \\
& 4=p-3 \\
& p=7
\end{aligned}
$$

$$
q=3
$$

$$
x=0
$$

(5C)

$$
\begin{aligned}
& y=7+\frac{q}{x-3} \\
& H A: \quad \text { set } \quad x=100000 \\
& y=7 \quad
\end{aligned}
$$

$6 a$

$$
\left.\begin{aligned}
& f(x)=e^{x+3} \\
& f(x)=\ln x-3 \\
& y=e^{x+3} \\
& f^{-1} \\
& \ln x=+n+3 \\
& \ln x=y+3 \\
& \ln x-3=y
\end{aligned} \right\rvert\, \quad x>0
$$

$$
\begin{aligned}
& \frac{6 b}{f^{-1}(x)}=\ln \frac{1}{x}, f^{-1}(x)=\ln x-3 \\
& \left.\therefore \ln \frac{1}{x}=\ln x-3\right) \\
& \ln \frac{1}{x}=\ln x-\ln e^{3} \\
& \infty\left(\frac{1}{x}\right)=\ln \left(\frac{x}{e^{3}}\right) \\
& \frac{1}{x}=-\frac{x}{e^{3}} \\
& \therefore x^{2}=-e^{3} \\
& x=\sqrt{e^{3}} \\
& x=e^{\frac{3}{2}}
\end{aligned}
$$

(7)

$$
\begin{array}{ll}
x^{2}-3 x+k^{2}=4 \\
x^{2}-3 x+k^{2}-4=0 & a=1 \\
\Delta>0 & b=-3 \\
b^{2}-4 a c>0 & c=k^{2}-4 \\
(-3)^{2}-4(1)\left(k^{2}-4\right)>0^{x^{2}-x+(k+3)=0} \\
9-4 k^{2}+16>0 & x^{2} x+k=2 x+3 \\
-4 k^{2}+25>0
\end{array}
$$

divide by -1 both sides

$$
4 K^{2}-25<0
$$

$$
(2 K-5)(2 K+5)<0
$$

$$
2 \mathrm{~K}-5<0 \quad \text { or } 2 \mathrm{~K}+5<0
$$

$$
K<2.5 \quad K>-2.5
$$

Therefore:

$$
-2.5<K<2.5
$$

$$
\begin{aligned}
& f^{\prime}(-1)=5 \\
& f(-1)=2 \\
& f(2)=1
\end{aligned}
$$

